MCT (Triglicéridos de Cadena Media)

Es interesante destacar aquí el papel que tienen los Triglicéridos de Cadena Media (conocidos como MCT o aceite MCT) en la nutrición deportiva. Se denominan así porque son triglicéridos en los que la longitud de los ácidos grasos que los componen está entre 6 y 10 átomos de carbono. Esta longitud corta de las cadenas les aporta unas características que los diferencian del resto de las grasas alimentarias.

coco bath itemsLa mayoría de grasas de nuestra dieta habitual están formadas por triglicéridos de cadena larga (LCT), no conteniendo los de cadena media (MCT).

Los MCT tienen un tamaño molecular pequeño, son líquidos a temperatura ambiente y más solubles en agua que los LCT, que son sólidos e insolubles en agua.

Todas estas características los hacen potencialmente importantes para los deportistas, ya que son digeridos rápidamente y absorbidos en el intestino, desde donde se transportan directamente al hígado sin necesidad de circular a través de la linfa. Además, cuando son liberados al torrente sanguíneo, los MCT pueden circular libres o unidos a la albúmina, mientras que los LCT solamente lo pueden hacer unidos a la albúmina.

Pero hay otra importante diferencia que los hace muy interesantes desde el punto de vista de la obtención de energía: los ácidos grasos, una vez en el interior de la célula, antes de que puedan ser oxidados, recordemos que deben ser transportados al interior de la mitocondria.

Pues bien, los ácidos grasos provenientes de los MCT no necesitan del transportador L-carnitina para penetrar a través de la membrana mitocondrial, lo cual hace que la disponibilidad de L-carnitina que en ese momento tenga la célula, no sea en ningún momento un factor limitante para su transformación en energía.

Todo ello unido a que los MCT contienen el doble de energía que los hidratos de carbono, hace muy interesante su utilización para los deportistas. Solamente hay un problema importante, y es que la ingesta de cantidades importantes puede provocar problemas gástricos.

Por ello se recomienda que la toma de MCT no exceda de los 30 gramos en cada toma y si se realiza más de una, deben separarse, al menos, una hora.

Un estudio publicado en la revista “Neurobiology of Aging” utilizó pacientes con enfermedad de Alzheimer o deterioro cognitivo medio a los que en diferentes sesiones, se les suministró triglicéridos de cadena media emulsionadas o una sustancia placebo. Los investigadores observaron aumentos significativos en los niveles de plasma sanguíneo de cuerpos cetónicos beta- hydroxylutyrate (beta – OHB) tras sólo 90 minutos después de la administración. Además, dependiendo del genotipo de la apolipoproteína E del paciente evaluado, los niveles de beta- OHB siguieron aumentando o bien se mantuvieron constantes en la sangre entre 90 y 120 minutos en el grupo experimental que recibió el tratamiento, no siendo así en el grupo que recibió el placebo.

¿Qué es la amilopectina? y sus propiedades

La amilopectina es un carbohidrato a base de amilopectina de almidón modificado por lo que aporta una efectiva carga de energía muscular (glucógeno) de una biodisponibilidad inigualable. Vitargo ha sido probado clinicamente en el Instituto Karolinska de Estocolmo, y comparado con otros suplementos y bebidas deportivas de carbohidratos.

Vitargo_m¿Qué tiene de especial?
 
Existe una enorme variedad de suplementos de carbohidratos, bebidas energéticas, etc. Al consumidor se lo ponen muy difícil a la hora de elegir el producto apropiado. Es fácil perderse en el laberinto terminológico con palabras como osmolaridad, polímeros de glucosa, maltodextrina, dextrosa, etc.

Vitargo es una de las mejores alternativa en el mercado de los suplementos de carbohidratos.

Los suplementos y bebidas energéticas con carbohidratos consisten en almidones degradables. En la etiqueta encontraremos ingredientes listados como maltodextrina, jarabe de glucosa y dextrosa (glucosa). Estas combinaciones se llaman, también, almidones hidrolizados, carbohidratos complejos y polímeros de glucosa.
Además de estos ingredientes, la mayoría de estos productos contienen azúcar común.

El almidón proviene, generalmente, del maíz, el trigo o la patata. El almidón es una molécula gigante construída por largas cadenas de las que la glucosa es la menor parte. Esto significa que una vez degradado totalmente el almidón uno se queda con una solución de glucosa (llamada dextrosa en su forma granulada).

La Maltodextrina y el jarabe de almidón son derivados del almidón fácilmente degradables. El nivel de degradación se llama también peso molecular. Para comprender lo que ésto significa hemos listado las fuentes más comunes de carbohidratos con su peso molecular para que nos sirvan de guía:

Almidón < 250 000 000

Vitargo 500 000 – 700 000

Maltodextrina 1 000 – 10 000

Jarabe de almidón 250 – 1 000

Dextrosa 180

Vitargo tiene un peso molecular 100 veces más grande que el de otros carbohidratos comunmente empleados en suplementos y bebidas
 
¿Qué beneficios nos aporta?

Sólo tienes que observar esta gráfica donde se compara Vitargo con otros carbohidratos a base de glucosa, maíz ceroso, fructosa, maltodextrina y sacarosa para comprobar que vitargo es uno de los mejores  productos de carbohidratos a nivel mundial.

1. Restaura el nivel de glucógeno muscular un 70% más rápido.

2. Abandona el estómago un 80% más rápido.

3. En los primeros 10 minutos tras su ingesta abandona el estómago un 130% más rápido que otros carbohidratos.

4. Mejora el rendimiento un 23%.

5. Evita la destrucción de las proteínas musculares en un 78%

Resumiendo, ésto significa:

-Vitargo permanece poco tiempo en el estómago y, por lo mismo, no produce malestar durante la actividad física.

-Vitargo no absorbe agua (fluídos) de las reservas corporales. Más bien aumenta el aporte de fluídos al flujo sanguíneo haciendo las veces de bomba durante el ejercicio.

-El almacenamiento de carbohidratos con Vitargo nos asegura buenos niveles de glucógeno sin alterar nuestra dieta habitual ni afectar nuestro rendimiento.

-Vitargo también contribuye a rellenar más eficazmente los niveles de glucógeno inmediatamente después del entrenamiento o la competición. Con ello retenemos un balance energético positivo que aleja los síntomas de sobreentrenamiento y nos protege de eventuales infecciones.

Vitargo tiene una estructura de osmolalidad muy baja, lo que se refiere a la cantidad de agua que extrae, lo cual permite facilitar el transporte de la energía y reducir al mínimo el riesgo de calambres. Además no absorbe agua de las reservas corporales, todo lo contrario, aumenta el aporte de fluidos al flujo sanguíneo y nos asegura buenos niveles de glucógeno sin alterar nuestra dieta habitual ni afectar el rendimiento.

Carga y Descarga durante el Ejercicio

No sólo es necesario analizar las bebidas que tomamos durante una larga sesión de entrenamiento, sino también los suplementos que consumimos en forma de carbohidratos. La elección de estos carbohidratos es esencial si deseamos conseguir los mejores resultados y evitar problemas estomacales. Si elegimos un carbohidrato fácilmente degradable, de estructura molecular corta como, por ejemplo, el jarabe de glucosa, aumentamos el riesgo de problemas estomacales. En cambio, eligiendo un carbohidrato químicamente parecido al almidón de estructura molecular larga como, por ejemplo, la de Vitargo, habremos dado en la tecla.

Explicado más simplemente, la mayor tasa de degradación de un almidón equivale una mayor osmolaridad en agua. La Osmolaridad afecta al estómago en tal medida que una tasa alta de osmolaridad frena el pasaje a través del estómago. Además, el agua queda retenida en el estómago debido a la permanencia provocada por el llamado efecto osmótico.

Las soluciones de baja osmolaridad se llaman hipotónicas. Mientras más hipotónica sea una solución más rápido será el tránsito de al misma por el estómago hacia el intestino, donde tiene lugar el consumo energético. La baja osmolaridad puede beneficiarnos de otra manera, bombeando la carga hacia el flujo sanguíneo

Vitargo posee la osmolaridad más baja de todas las soluciones ultra-hipotonicas del mercado.

Resultados de Osmolaridad

Bebidas Deportivas – Vitargo CARBOLOADER – Maxim Original – Isostar

Solución al 5%……………………..11…………………………48…………………….89

Solución al 10%……………………24………………………..100…………………..181

Solución al 15%……………………39………………………..165…………………..306

Estos resultados provienen de la combinación de los productos en agua destilada. Se realizó de esta manera porque la dureza del agua del grifo varía por regiones y puede afectar a los valores de osmolaridad entre 5-15 unidades. Se recomienda una concentración de carbohidratos del 5-8% durante el entrenamiento. Recuerde que Vitargo CARBOLOADER posee una osmolaridad 15% menor que la de Maxim Original, que es del 5%.

Carga / Recarga

Estudios realizados por el Instituto Karolinska en Suecia revelan que Vitargo carga y recarga carbohidratos más efectívamente que otras bebidas de carbohidratos. La explicación de la superioridad de Vitargo difiere según los investigadores. Todos los diagnósticos afirman que Vitargo es la manera más rápida y efectiva de restaurar el balance energético del organismo.

Los primeros que notaron la diferencia entre Vitargo y otros suplementos con carbohidratos fueron los atletas de deportes de resistencia como triatlón, maratón, ciclismo y esquí de fondo. Descubrieron que aguantaban más y se recuperaban antes, al mismo tiempo que disminuían los síntomas de sobreentrenamiento y la sensibilidad a las enfermedades.

AMILOPECTINA¿Cuándo tomar Vitargo?

Antes del entrenamiento para mejorar la resistencia: Se recomienda tomar  Vitargo 30 minutos antes de la sesión de entrenamiento. Vitargo es un carbohidrato complejo que repone las reservas de energía más rápidamente que cualquier otro carbohidrato, por ello tus entrenamientos serán más dinámicos, además te ayudará a aumentar la resistencia y combatir la fatiga.

Durante el entrenamiento para evitar la fatiga: Durante la realización del ejercicio se va consumiendo la energía en forma de glucógeno que el hígado proporciona, existen evidencias de que Vitargo mejora la resistencia a la fatiga durante la práctica deportiva prolongada.

Después de un intenso entrenamiento, para construir el músculo: Tras una sesión de entrenamiento intenso el músculo empieza a reconstruir las pequeñas fisuras que se han producido. Es ideal tomar un batido de proteína acompañado de vitargo. Vitargo va a reponer tus reservas de glucógeno gastadas y reparar el daño producido por el entrenamiento intenso. Si tu entrenamiento dura más de una hora y combina sesiones de aeróbico con trabajo muscular, te conviene tomar Vitargo para evitar perder la masa muscular que tanto cuesta ganar, porque el cuerpo puede llegar a consumir el músculo como combustible para reponer la energía perdida cuando no dispone de reservas de grasa o de glucosa a mano.

1.Cuántas tomas hay que hacer al día?

Pues se dice que las tomas ideales son 3, una en el desayuno, otra antes de entrenar y otra después de entrenar.

Por tanto existe una división de opiniones entre los que prefieren la toma pre-entrenamiento (para levantar más peso en el entrenamiento) y los que la prefieren en el post-entrenamiento (para recuperarse más rápido del entrenamiento)

2.Cuanto vitargo debo tomar?

Lo mejor es tomarse un gramo de vitargo por kg de peso y por toma. Es decir, que si pesas 75kg, pues 75 gramos de producto. Un cacito de los que te dan con el bote suelen ser 15 gramos pero de todas formas miradlo en la etiqueta por si acaso.

3.Con qué combino el vitargo?

Lo mejor es combinarlo con 750ml de agua en un shaker y batirlo. Si no te gusta el sabor, pasa el trago y ya está pero no es muy recomendable mezclarlo con leche porque ésta tiene mucha lactosa y puede perjudicar mucho. Lo mejor: con agua

4.Es verdad que el Vitargo con la Creatina tiene muy buenos resultados?

Todo el mundo que ha probado esta combinación no dice más que maravillas de los resultados que ha obtenido y tiene su explicación en que la creatina se absorbe mejor con productos con el IG alto, por tanto, cuando se toma con el Vitargo, su absorción es muy rápida y su efecto por tanto mayor

*vitargo + electrolitos (tabla)

v+electro

 

 

 

 

 

 

 

 

¿Hay diferencia entre vitaminas naturales y sintéticas?

El concepto de vitaminas, proviene del latín, vita (vida) e ina (sustancia). Estas pueden ser consideradas, como sustancias heterogéneas, las cuales son imprescindibles para la vida del ser humano

¿Qué es una vitamina natural/organica?
Las vitaminas naturales son las que se extraen a partir de la fuente natural que las contiene, es decir, se ingieren tal y como las da la naturaleza y el cuerpo las necesita: a partir de un alimento que las contiene, pues un alimento que contiene un micronutriente también tiene los elementos que actúan en sinergia para que dicha vitamina, o micronutriente se aproveche y no sea eliminado ni cause daño.

Una provitamina es una sustancia que puede y tiene que ser transformada en el cuerpo por el propio metabolismo o factores externos en la vitamina para ser aprovechada como ocurre con la provitamina D3 que se transforma en vitamina D3 en la piel por acción de la radiación Ultravioleta, o lo que ocurre con la carotina o beta-caroteno, sustancia que le confiere el color rojo anaranjado a las zanahorias. El betacaroteno es transformado por el cuerpo en vitamina A. Su absorción dependerá de la absorción de grasas porque depende de ellas. Aumenta la absorción si hay grasas en la alimentación y a la contra, disminuye la absorción si hay insuficiencias biliares, la parafina líquida, la colesteramina.

Las-vitaminasSabemos que la falta de vitamina (hipovitaminosis) conlleva a una amplia gama de problemas que abarca desde la anorexia hasta la obesidad, el mal funcionamiento de los órganos, confusión, depresión y fatiga.
No obstante, el hecho de que las vitaminas le hagan daño o no, es otra historia. Las personas no se percatan de que todas las vitaminas no se confeccionan igual y muchas son, de hecho, sintéticas.

¿Qué es una vitamina sintética?
El tipo de vitamina más beneficioso es un tema sujeto a discusión. Una dieta orgánica y saludable debe proporcionar una buena cantidad de nutrientes que el organismo necesita; sin embargo los suplementos pueden ayudar a garantizar que tomemos una dosis saludable de vitaminas específicas.

El problema radica en que muchos suplementos vitamínicos y minerales se elaboran de manera sintética y no de su fuente natural. Están hechos para imitar la manera en que las vitaminas naturales actúan en nuestro organismo. Las vitaminas naturales provienen directamente del material de la planta que contiene la vitamina.

Muchas vitaminas sintéticas adolecen de transportadores y cofactores asociados con las vitaminas que se dan de manera natural porque han estado “aisladas”. La Asociación de Consumidores Orgánicos recalca que el organismo no puede utilizar o reconocer las vitaminas aisladas de la manera que lo hace con la versión natural.
La forma natural viene en paquete con otras vitaminas, enzimas y minerales que controlan la manera en la que el organismo las reconoce, las metaboliza y las usa para lo que las necesite.
Cuando el cuerpo no puede utilizar las vitaminas “aisladas”, el cuerpo las almacena hasta que obtenga o crea nutrientes requeridos para usarlas eficazmente o las exrete. Las vitaminas sintéticas también carecen de minerales y el organismo tiene que usar su propia reserva de minerales. Esto puede ocasionar un déficit peligroso de minerales.

¿Sabía que más del 95% de todos los suplementos vitamínicos que se venden hoy, clasifican en la categoría de sintético.?

¿Cuál es el problema con las vitaminas sintéticas?
Las versiones sintéticas de las vitaminas contienen compuestos químicos que no estaban destinados al consumo humano y que no se originan en la naturaleza. La evolución ha dictado que comemos los alimentos que recogemos de la tierra, no el que se origina en un laboratorio.

No siempre vamos a obtener lo que esperamos de los sintéticos. La versión sintética de la vitamina E, con frecuencia es referida como forma-dl. La forma-dl es una combinación de forma-d (que por cierto, es la forma que se da naturalmente) y la forma-l. Nada del otro mundo, ¿verdad?

Bueno, puede que no lo sea, salvo por el hecho de que el organismo no utiliza realmente la forma-l – y la excretamos. Debo acotar que esto se aplica sólo a las vitaminas y no a los aminoácidos o los azúcares. Las vitaminas solubles en grasa en su forma sintética son particularmente peligrosas porque se pueden acumular en su tejido adiposo y causar toxicidad (si se toman en exceso). Lo que hace a lo sintético más peligroso es que se acumula una dosis concentrada elevada de la vitamina en vez de la cantidad que acumularía por la vía de los alimentos.

  • Las vitaminas A, D,E y K son solubles en grasa
  •  Las vitaminas solubles en grasa se encuentran de manera natural en la mantequilla, aceites de pescado, nueces y vegetales de hojas verdes.
    Los excesos de las vitaminas solubles en grasa, se almacenan en el hígado y los tejidos adiposos.
  • Muchas personas no obtienen la cantidad suficiente de vitaminas solubles en grasa de su dieta.

¿Cómo Saber si las Vitaminas son Sintéticas o Naturales?

La Asociación de Consumidores Orgánicos ha publicado un gráfico de ingredientes para ayudar a los consumidores a identificar las vitaminas naturales y las sintéticas. Muchos productores de vitaminas quieren hacerlo creer que compra un “producto natural” porque parece más saludable si toma vitaminas “naturales”.

Desafortunadamente, las vitaminas se clasifican como naturales si contienen el 10% de la forma natural de la vitamina. Esto significa que su vitamina natural puede tener 90% de químicos producidos sintéticamente. Las vitaminas B y C, generalmente son producidas sintéticamente también.

Vitaminas Sintéticas Comunes a Evitar:
Busque información en las etiquetas de las vitaminas para ver el origen.
Vitamina A: Acetato y palmitato
Vitamina B1(Tiamina): Mononitrato de tiamina, hidroclorato de tiamina
Vitamina B2: Riboflavina
Ácido pantoténico: Calcio D-pantotenato
Vitamina B6 (Piridoxina): Hidrocloruro de piridoxina
Vitamina B12: Cobalamina
PABA (Ácido para-aminobenzoico ): Ácido 4-aminobenzoico
Ácido fólico: Ácido peteroilglutámico
Colina: Cloruro de colina, bitartrato de colina.
Biotina: d-Biotina
Vitamina C: Ácido ascórbico
Vitamina D: Ergosterol irradiado, calciferol.
Vitamina E: Tocoferol dl-alfa, acetato o succinato de Tocoferol dl-alfa

NOTA: la forma “dl” de cualquier vitamina es sintética.

Otros Ingredientes Tóxicos que se Deben Evitar en los Suplementos:
Estearato de magnesio (o ácido esteárico) inhibe la respuesta inmunológica
Glutamato monosódico (MSG) se disimula como “sabor natural”
Cera de carnauba se usa en ceras para autos y esmalte de zapatos
Dióxido de titanio es un carcinógeno

Aminoácidos de cadena ramificada (BCAA´S)

Los BCAA´S (Branched chain aminoads) o aminoácidos de cadena ramificada son aquellos aminoácidos esenciales, (VALINA, LEUCINA e ISOLEUCINA) cuya estructura molecular contiene varias cadenas laterales unidas a su configuración básica. Se dice que son aminoácidos esenciales porque necesitamos consumirlos en nuestra dieta ya que el cuerpo es incapaz de sintetizarlos por sí mismo.

BCAA

Estos aminoácidos son atrapados en seguida por el músculo, de hecho, nuestros músculos sienten tanta fruición por los aminoácidos de cadenas ramificadas que a veces absorben en exceso. Esto les obliga a asistir a los músculos en la síntesis  del resto de los aminoácidos necesarios para el proceso anabólico.

Trabajan, pues de una forma parecida a los esteroides anabolizantes pero de forma inocua. Una ces que los BCAA´S salen del hígado y del músculo, el esqueleto de carbono de estos aminoácidos se usa como combustible mientras que los residuos de nitrógeno forman el aminoácido alanina. La alanina se transporta luego al hígado donde se convierte en glucosa (gluconeogénesis).

Consecuentemente, esta glucosa se devuelve a los músculos esqueléticos para ser usada como combustible (ciclo de la glucosa-alanina).

Por tanto, la ingestión de BCAA´S puede significar un descenso neto de la cantidad de proteína en los músculos que se tiene que descomponer, lo que supone aplicaciones para los atletas de fuerza y de resistencia. Adicionalmente, en un estado de agotamiento de carbohidratos la ingestión de BCAA´S puede ahorrar el uso de glucógeno muscular.

Otra forma de actuación ergogénica de estos aminoácidos (especialmente la leucina) es mediante el estímulo de la producción de insulina. Esto significa que las células tomarán más glucosa sanguínea para usarlo como fuente de energía. La insulina actúa conjuntamente con los BCAA´S para conducir hasta los músculos todos los demás aminoácidos (excepto el triptófano), que serán usados después como elemento de construcción del tejido muscular.

Resumiendo, los aminoácidos ramificados tienen un puesto clave entre las ayudas ergogénicas. Estimulan dos de los efectos más buscados en el rendimiento deportico: la producción energética para el trabajo muscular y el proceso anabólico natural en el interior de las células musculares.

Los BCAA´S deben tomarse 15-30 minutos antes de cada entrenamiento (También cuando se pretenda hacer aérobico), en dosis de 1-4 gramos de cada aminoácido, recomiendo también hacer una toma a mitad del entrenamiento de pesas y justo al finalizar el mismo. Es aconsejable tomar cantidades adecuadas de vitamina B6 que actúa como cofactor en las reacciones de conversión de los aminoácidos. Además, los 3 aminoácidos LEUCINA, VALINA, e ISOLEUCINA, deben estar disponibles al mismo tiempo para asegurar la máxima absorción corporal y en horas diferentes a las tomas de triptófano y tirosina ya que los BCAA´S bloquean la absorción de los mismos

Vitaminas Liposolubles, Vitamina A y alimentos que la contienen.

Vitaminas liposolubles

Tienen esta denominación porque son las que se disuelven en disolventes orgánicos, aceites  y grasas. Las vitaminas liposolubles se almacenan en el hígado y en el tejido adiposo, porlo que es posible, si se ha efectuado un aprovisionamiento suficiente, subsistir por un período de tiempo sin su aporte.

Puesto que ni se absorben ni se eliminan rápidamente, si se realiza una ingesta desmesurada de más de diez veces las cantidades recomendadas, puede originar trastornos por intoxicación.
Este grupo de vitaminas suele estar contenido en alimentos grasos y a diferencia de las hidrosolubles, son poco alterables.

vitamina A o retinol

No se trata de una sola sustancia, sino de un grupo de sustancias químicamente relacionadas.

La vitamina A sólo está presente como tal en los alimentos de origen animal, en los vegetales se encuentra en forma de carotenos, precursores de vitamina A que se transforman en el cuerpo humano.

La función principal que tiene es la protección de la piel y su intervención en el proceso de visión de la retina. También participa en la elaboración de enzimas en el hígado y de hormonas sexuales y suprarrenales. Además es una sustancia antioxidante, ya que elimina radicales libres y protege al ADN de su acción mutágena y contribuye a frenar el envejecimiento celular. Podemos resumir diciendo que es esencial para la visión, el crecimiento de células epiteliales y el sistema inmune.

Puede haber déficit en enfermos pancreáticos y alcohólicos. La alteración carencial puede producir ceguera nocturna, desecación en la piel y en los ojos, y en niños puede provocar un retardo en el crecimiento.

El consumo de alimentos ricos en vitamina A es aconsejable en personas propensas a padecer infecciones respiratorias, problemas oculares o con la piel seca o escamosa.

Se encuentra principalmente en el hígado de ternera, el aceite de hígado de pescado o la leche, sus precursores o carotenoides están en vegetales como la zanahoria, las espinacas, el pimentón rojo, la lechuga o las ciruelas. Las necesidades diarias son de 0,75 mg o lo que es lo mismo, 2.500 unidades de retinol.

vitamina A

 

Interés nutricional deportivo sobre los hidratos de carbono.

Los hidratos de carbono, fundamentalmente el glucógeno y la glucosa, constituyen el sustrato energético más importante para la fibra muscular activa durante el ejercicio físico, de tal forma que una de las principales causas de fatiga muscular se asocia a la falta de disponibilidad de carbohidratos para la obtención de energía.

Si no existe una disponibilidad adecuada de glucosa durante el ejercicio, la intensidad de éste disminuirá, ya que la energía proveniente de la oxidación de los lípidos y/o de las proteínas no genera tanta energía por unidad de tiempo como los hidratos de carbono.
hidratos1Así pues, asegurar un aporte de carbohidratos a las fibras musculares activas durante todo el tiempo que sea necesario, resulta esencial no sólo para retrasar la aparición de la fatiga, sino también para elevar el rendimiento deportivo.

La ingesta de hidratos de carbono es fundamental en cualquier tipo de situación deportiva (a no ser que se pretenda “secar” el cuerpo y su ingesta sea menor), pero especialmente en aquéllas que su duración es superior a una hora.

Hace ya más de treinta años quedó demostrado mediante biopsias musculares que la realización de ejercicios submáximos (se entiende como ejercicio submáximo el realizado alrededor del 80-85% de la intensidad máxima) de larga duración exigía una continua disponibilidad de glucosa.

Cuando los depósitos de glucógeno muscular eran bajos, aparecía la fatiga, de tal forma que aquellos deportistas que comenzaban el ejercicio con mayores concentraciones de glucógeno tendían a resistir el esfuerzo durante más tiempo que los que lo hacían con bajas concentraciones. Esto tuvo como resultado el diseño de estrategias dirigidas a realizar cambios en la alimentación y el entrenamiento, todos ellos destinados a incrementar los depósitos orgánicos de glucógeno, para así, aumentar el rendimiento deportivo.

Estos cambios perseguían realizar una carga de carbohidratos durante los dos o tres días previos al esfuerzo, entendiendo éste como ejercicio de resistencia submáximo, pensando que así se podría aumentar el rendimiento, sobre todo en aquellos esfuerzos donde la demanda de glucógeno muscular es muy grande.
El primer nombre que se le dio a este tipo de dieta fue el de «dieta disociada escandinava ». Comenzaba 6-7 días antes de la competición: durante tres días se entrenaba a gran intensidad y se reducía casi a cero la ingesta de carbohidratos (se comían proteínas y grasas), y durante los otros tres se reducía el entrenamiento exclusivamente a ejercicios de elasticidad a la vez que la proporción de carbohidratos que se consumía era como mínimo del 80% de las calorías totales.
Actualmente, se conoce como carga de carbohidratos y es una variación de la anterior, donde no se dejan de consumir carbohidratos durante los primeros tres días, aunque sí se reduce su proporción, ya que se ha comprobado que los resultados de la carga son los mismos, de este modo se reducen los desagradables efectos del entrenamiento con prácticamente “cero” carbohidratos.
Lo que sí está demostrado también, es que para una misma intensidad de esfuerzo los deportistas muy entrenados en resistencia utilizan menos glucógeno que los peor entrenados.

Esto es así porque los primeros han desarrollado una mayor capacidad aeróbica que los segundos y ello les permite seguir utilizando los ácidos grasos como sustratos energéticos para una misma intensidad de esfuerzo, lo cual conduce a un mayor ahorro de glucógeno. Ahora bien, tanto los unos como los otros necesitan seguir consumiendo una dieta muy rica en carbohidratos, ya que constituyen el principal sustrato energético muscular en esfuerzos intensos y/o prolongados.

Por ello, las dietas deben contener como mínimo un 55-60%  (puede ser menor en caso de definicion múscular ) de la ingesta calórica total en forma de carbohidratos. Así pues, una dieta de 2.500 kcal diarias debe contener un mínimo de 310 g de carbohidratos, que representan aproximadamente 4,5 g por kilo de peso del deportista y día.

Ahora bien, para ejercicios de moderada o alta intensidad y de duración no superior a una
hora se requieren ingestas de carbohidratos del orden de 6-7 gramos por kilo de peso y día.
Para conseguir estas ingestas son de gran ayuda los llamados suplementos dietéticos específicamente formulados para deportistas, ya que a la vez de carbohidratos, contienen otro tipo de nutrientes como minerales y vitaminas que facilitan la utilización metabólica de los carbohidratos.

IMPORTANCIA DE LOS CARBOHIDRATOS EN EL DEPORTE

  • La falta de carbohidratos disminuye el rendimiento y acelera la aparición de la fatiga.
  • La administración de carbohidratos mantiene el rendimiento y retrasa la fatiga.
    Una dieta rica en carbohidratos mejora el rendimiento durante los esfuerzos de varios
    días de duración.
  • Las dietas bajas en carbohidratos retrasan la recuperación postejercicio y disminuyen el rendimiento.

 

Principios inmediatos

Las Vitaminas

frutas-y-verdurasLas vitaminas son un grupo de sustancias de naturaleza orgánica que están presentes en pequeñas cantidades en los alimentos, y que son imprescindibles en los procesos metabólicos que tienen lugar en la nutrición de los seres vivos. No aportan energía y por lo tanto no producen calorías, ya que no se utilizan como combustible, pero sin ellas el organismo no tiene la capacidad de aprovechar los elementos constructivos y energéticos suministrados por los
alimentos o nutrientes.

Tienen la importante misión de facilitar la transformación en energía que siguen los substratos a través de las vías metabólicas, que intervienen como catalizador en las reacciones bioquímicas.

Por el torrente sanguíneo llegan al interior de las células, y se utilizan como precursoras
de las coenzimas, a partir de las cuales se elaboran las miles de enzimas que regulan
las reacciones de las que viven las células.

Un aumento de las necesidades biológicas requiere un incremento de estas sustancias, como sucede en determinadas etapas de la infancia, el embarazo, la lactancia y durante la tercera edad. Por el mismo motivo, hoy todo el mundo reconoce que tanto los deportistas o quienes practican una actividad física intensa requieren un mayor aporte vitamínico por el incremento en el esfuerzo físico. También el consumo de tabaco, alcohol o drogas en general y el abuso de café o té provocan un mayor gasto de algunas vitaminas, por lo que en estos casos es necesario un aporte suplementario.

Aunque las necesidades orgánicas sean de miligramos o incluso microgramos, son nutrientes esenciales, puesto que no podemos sintetizarlas, por lo tanto debemos ingerirlas obligatoriamente con la alimentación. Una excepción es la vitamina D, que se puede formar en la piel con la exposición al sol, y las vitaminas K, B1, B12 y ácido fólico, que se forman en pequeñas cantidades en la flora intestinal.

La dieta debe ser equilibrada y abundante en productos frescos y naturales, para disponer
de todas las vitaminas necesarias, privilegiando más los alimentos de fuerte densidad nutricional, como las legumbres, cereales y frutas, sobre los meramente calóricos. Otro aspecto importante a valorar es la conservación y cocción de los alimentos, ya que se producen pérdidas vitamínicas inevitables, puesto que el agua, el calor y el tiempo disminuyen el nivel vitamínico de los alimentos por una oxidación acelerada.
Algunas personas, o ciertos grupos, cuentan con carencias vitamínicas sistemáticas. Dentro de estos grupos de riesgo están las personas que realizan una restricción calórica permanente al tiempo que desarrollan mucho ejercicio, como son las gimnastas o bailarinas, personas muy preocupadas con su figura que realizan regímenes muy desequilibrados en su contenido, consumidores de comidas rápidas o enlatadas por razones laborales o por vivir solos, también los vegetarianos, ya que tendrían carencias de las vitaminas contenidas en los productos cárnicos y lácteos.
El criterio más común para clasificarlas es el de su solubilidad, atendiendo a ello, las dividimos en dos grandes grupos:

  • Solubles en agua o hidrosolubles.
  • Solubles en grasas y aceites o liposolubles.

vitaminas

Suplementos Laura Fitness

Tipos de Creatinas

1372868787-426CREATINA MONOHIDRATO (CREATINA DE PRIMERA GENERACION)
Es una molécula de creatina unida a una molécula de agua. Esta es la más frecuente porque es la forma en la que la creatina está más disponible para el organismo. El monohidrato de creatina es como un polvo blanco, insípido y que se solubiliza rápidamente en agua

SUERO DE CREATINA
Se presenta en estado líquido y tiene una altisima biodisponibilidad a nivel celular. Con unas gotas de este tipo de creatina obtenemos el mismo resultado que la cantidad toma en polvo.

Kre Alkalyn
Se diferencia de las demas por tener un nivel de PH elevado, concretamente un PH12 (la monohidrato tiene entre PH6 y PH9). La eficacia de este tipo de creatina se basa en como se degrada la creatina en creatinina. Cuanto mayor es el PH de una creatina, mas tiempo tarda en degradarse, de esta forma, conseguimos una creatina con prácticamente un 100% de absorción y ergogénica, y sin tener que hacer trabajar muy duro a tus riñones. Otra pequeña ventaja es que para notar resultados bastaría con ingerir de entre 1 y 3 gramos diarios en la fase de mantenimiento.

NITRATO DE CREATINA

Es una forma de creatina donde un nitrato (NO3) se ha unido a la molécula de creatina, mejorando la solubilidad en agua.

FOSFATO DE CREATINA
Los suplementos de fosfocreatina (presente en la fórmula de Cell-Tech Hardcore Pro Series, de Muscletech) contienen tan solo un 62,3% de creatina y un 37,7% de fosfato, lo que significa que en cada gramo de fosfato de creatina hay 623 miligramos de creatina. Los estudios científicos afirman que puede no ejercer mejores efectos que la creatina monohidrato.

Esto mismo se comprobó a través de un trabajo científico que llegó a la conclusión de que la fosfocreatina posee los mismos efectos que la creatina monohidrato sobre los índices de fuerza, la composición corporal y la presión sanguínea

CITRATO DE CREATINA
El citrato de creatina (presente en la fórmula de Xpand Xtreme Pump, de Dymatize) es la creatina más soluble en agua de todas las que existen. Esto significa que se absorbe con mayor facilidad a través del agua. Además, contiene ácido cítrico, que tiende a aumentar la producción de energía muscular.

Este tipo de creatina incluye solo un 40% de creatina, por lo que en cada gramo de citrato de creatina hay 400 miligramos de creatina.

CREATINA MALATO
Esta es una combinación de creatina y ácido málico. Comparada con la creatina monohidrato, la creatina malato (presente en la fórmula de Anabolic HALO Pro Series, de Muscletech) poseé un mayor potencial para producir energía.

El ácido málico favorece el aumento de la masa corporal, la fuerza muscular, la explosividad, la resistencia y la concentración. Además, es soluble en agua, lo que significa que aporta una absorción más rápida y unos resultados consistentes.

CREATINA PIRUVATO
La creatina piruvato es una molécula que combina un 68% de creatina monohidrato y un 40% de ácido pirúvico. La suma de los porcentajes supera el 100% debido a la conversión de creatina monohidrato a creatina piruvato.

Esta clase de creatina es una combinación de creatina y piruvato y es 10 veces más soluble que cada una de estas soluciones por separado. La creatina y el piruvato son excelentes ergogénicos y tienden a estimular el crecimiento muscular y la reducción de la grasa corporal. La fórmula de creatina piruvato se creó para potenciar la energía y la resistencia de los atletas.

CREATINA MICRONIZADA

Al haber sido sometida a un proceso de micronización, tiene una mejor disolución y digestión que la creatina convencional, ya que el proceso de micronización aumenta la biodisponibilidad de la creatina, es decir, permite conseguir partículas 9 veces más finas que las de un polvo tradicional y de forma esférica, lo que contribuye a que, al ser consumida, se obtenga la cantidad máxima posible del principio activo deseado: la creatina; así se aumenta sus efectos y sus propiedades biofarmacéuticas.

CREATINA ALFACETOGLUTARATO (AKG)
La creatina AKG (presente en la fórmula de N.O. Shox, de Xcore Nutrition) presenta creatina con una molécula de alfacetoglutarato. Puesto que el AKG es un ciclo de krebs la creatina penetra con mayor facilidad en las células musculares, por lo que proporciona más creatina a los músculos

CREATINA DECANATO
La creatina decanato es más absorbible y posee un índice de retención de agua menor, al igual que la creatina etil éster. Tras la ingestión, se disuelve rápidamente, por lo que provoca un mayor aumento de energía y recicla la potencia muscular. En consecuencia, cuanta más creatina decanato se tome antes y después del entrenamiento, más crecen los niveles de energía y más se incrementan la fuerza y la resistencia.

Este tipo de creatina contiene un 46% de creatina, lo que hace que sean necesarios 5 o 6 gramos para que el cuerpo reciba los 2 o 3 gramos de creatina que es capaz de absorber.

HIDROCLORURO DE CREATINA
Descubierta casi por accidente mientras se sintetizaban los ingredientes que contiene la creatina etil éster, el hidrocloruro de creatina (presente en la creatina Con-Crét) posee una gran solubilidad en agua y estabilidad molecular.

Lo que es más importante es que el índice de conversión de esta creatina en creatinina es prácticamente nulo, lo que hace que las personas que la ingieren reciban un mayor porcentaje de creatina que aquellos que consumen creatina monohidrato.

LA CREATINA DE TERCERA GENERACIÓN

Contiene el monohidrato combinado con l-glutamina, vitaminas del complejo B o ácido alfa lipoico. El ácido alfa lipoico (ALA) y la dextrosa estimulan la liberación de insulina, y la introducción de glucógeno, creatina y aminoácidos en las células. Es por ello que la combinación de dextrosa, creatina y ácido alfa lipoico (75 g de dextrosa + 10 g de creatina + 20 mg de ácido lipoico), son las más usadas en la actualidad.

CONCLUSIÓN

Existen muchos otros tipos de creatina de los que no hemos hablado aquí, como la dicreatina malato, la tricreatina malato, el orotato de creatina, el taurinato de creatina, la creatina magnesio quelato, el nitrato de creatina, etc). Sin embargo, estas creatinas, carecen de estudios científicos en el ámbito de la nutrición deportiva. La que seguro que produce los efectos que hemos citado más arriba es la Creatina Monohidrato ya que está ampliamente estudiada y miles de deportistas la han utilizado hasta el momento.

La creatina

La creatina es un ácido orgánico nitrogenado que se encuentra en los músculos y células nerviosas de algunos organismos vivos. Es un derivado de los aminoácidos muy parecido a ellos en cuanto a su estructura molecular. Se sintetiza de forma natural en el hígado, el páncreas y en los riñones a partir de aminoácidos como la arginina, la glicina y la metionina a razón de un gramo de creatina por día. Constituye la fuente inmediata y directa para regenerar ATP y proveer de energía a las células musculares.

Fue identificada en el año 1832 cuando el químico francés Michel Eugène Chevreul descubrió un componente del sistema músculo esquelético al que identificó con el nombre griego kreas que significa carne.

La creatina también se encuentra presente de forma natural en alimentos como la carne (fundamentalmente en el pescado: ejemplos son el arenque y el salmón), los productos lácteos y el huevo.

CREATambién se comercializa en forma de suplemento dietario, sobre todo en dietas que buscan un aumento del músculo. Por sus funciones relacionadas con la resíntesis de ATP en el músculo ante esfuerzos de origen anaeróbico de elevada intensidad y corta duración, la suplementación con creatina es muy utilizada por deportistas. Se ha comprobado que un nivel apropiado de creatina libre en la masa muscular del organismo facilita la reposición y conservación de la fosfocreatina.19 Una persona metaboliza aproximadamente un 1.2% de la creatina que almacena, es decir que un deportista de 70 kg que ronda una cantidad de 120 a 140 g de creatina en su cuerpo, libera aproximadamente dos gramos de creatina, las pérdidas se compensan con una dieta adecuada.

La creatina es un anabólico que se emplea actualmente como suplemento dietético en algunos deportes de intensidad, debido a sus propiedades ergogénicas y que permite cargas repetitivas y breves periodos de recuperación, con el objetivo de ganar energía anaeróbica y tamaño muscular (sin un incremento del volumen de agua en los mismos).

¿Para que sirve?

  • Retardar la fatiga: Nos permite soportar mejor un ejercicio duro, ya que «tapona» el efecto del ácido láctico, sobre todo en actividades breves e intensas.
  • Aumento de la masa muscular y de la fuerza: La creatina intramuscular queda almacenada, haciendo a las células musculares absorber agua (hidratación celular). El acceso de agua al interior de la célula junto a la creatina y el glucógeno conlleva un aumento del volumen de la fibra muscular, así como de fuerza potencial. A mayor diámetro de la sección transversal, aumenta la masa muscular y por lo tanto más fuerza.
    Cuando el monohidrato de creatina está presente, las células musculares operan con mayor eficacia y aumentan de tamaño. Otra de las ventajas de su rápido funcionamiento es que pueden sintetizar más proteína con mayor diligencia, y la aceleración de la síntesis proteica permite que las células musculares se desarrollen más de lo que sería posible sin un suplemento de creatina.Una de las principales causas del sobreentrenamiento es la inexistencia de creatina intramuscular, frenándose la resíntesis del ATP. Un aporte de creatina asegura que eso no ocurra. Los culturistas se sienten animados a emplear creatina porque puede proveer energía a los músculos, resistencia de éstos y ayuda a reducir la grasa.
  • Hipertrofia muscular: El aporte sostenido y consecuente aumento de volumen por el acceso de agua acompañante terminan obligando a la fibra muscular a adaptarse a esa situación y por lo tanto requiriendo de forma fisiológica un aumento de síntesis de nuevas proteínas musculares que adecuen volumen y tamaño.
    Los estudios demuestran que tomando creatina se puede correr durante más tiempo y con mayor intensidad. Se ha observado que la creatina produjo un ligero incremento en el porcentaje de fibras musculares tipo II. Teóricamente, si pudiéramos aumentar el porcentaje de este tipo de fibras tendríamos más capacidad para producir un gran rendimiento de fuerza y de potencia, en relación con las otras fibras de tipo II y tipo I. Un incremento superior de fuerza se puede traducir en el incremento del potencial para el crecimiento de las fibras musculares.
  • Mejora el ejercicio anaeróbico: El ejercicio intenso e intermitente, del tipo explosivo, es aquel que requiere del ATP y PCr. Velocistas, powerlifters y culturistas pueden beneficiarse de los suplementos de creatina, que estimula su rendimiento.

¿Qué dosis se utiliza?

  • Para mejorar el rendimiento físico, se han probado varias dosis y regimenes diferentes:
  •  Se usa una dosis de carga de 20 gramos de creatina (o 0.3 gramos por kg) al día por 5 días y luego se sigue con una dosis de mantenimiento de 2 o más gramos (0.03 gramos por kg) diarios. A pesar de que 5 días de dosis de carga es lo típico también se ha usado una dosis de carga por solo 2 días.
  •  También se ha usado una dosis de carga de 9 gramos por 6 días. Algunas fuentes sugieren que, en vez de dar dosis de carga por tantos días, se pueden obtener resultados similares si se dan 3 gramos al día por 28 días.

¿Mejor absorción de la creatina?
El transporte de ATP a las células se puede potenciar mediante la ingesta simultánea de aminoácidos (la taurina, por ejemplo) o bien de hidratos de carbono, que elevan el índice glucémico y estimulan positivamente la secreción de insulina que a su vez estimula la captación de creatina por los tejidos.

La Creatina hará que retenga agua?
No. La creatina provoca que el agu¿a del mismo cuerpo se introduzca en las células, haciéndolas más grandes y más firmes. La retención de agua, que hace que los músculos se vean aguados, ocurre fuera de las células del músculo.

¿Existen interacciones con hierbas y suplementos?
Cafeína
Hay cierta preocupación de que la combinación de cafeína, efedra y creatina podría aumentar el riesgo de efectos secundarios graves. Hay un informe de un atleta que sufrió un derrame cerebral después de consumir, diariamente y durante 6 semanas, 6 gramos de monohidrato de creatina, 400-600 mg de cafeína, 40-60 mg de efedra y una variedad de otros suplementos. La cafeína podría también disminuir los efectos beneficiosos de la creatina en el rendimiento atlético.

Hay algunos argumentos que estiman que tomar la creatina mezclada con una bebida ácida (como zumo de naranja) puede obstaculizar los efectos de la creatina.

¿Tiempo de descanso?
Recomiendo de dos a cuatro meses como máximos de mantenimiento (de 2 a 10 gramos por día, repartido en el día) y un mes de descanso.

¿Efectos segundarios?
Se han reportado casos en los que la ingesta de creatina ha provocado trastornos gástricos (diarrea), o ligeros calambres musculares, pero no existen evidencias sensibles que demuestren su causa. Recomiendo beber suficiente agua y hacer los periodos de descansos.

Proteína Whey

protein_shake

El nombre “Whey” viene del inglés y significa “suero”. Muy por el contrario de ser un alimento sintético, la proteína Whey es totalmente natural ya que se obtiene a partir del suero de leche y es una proteína de alto valor biológico. El Whey es el caldo o suero que queda después de la fabricación del queso. Es tratado mediante una serie de filtros especiales para separar la proteína de suero de la de la lactosa y otros componentes como la grasa.

Antiguamente, al suero era considerado un desecho sin valor de la elaboración del queso, pero tras su estudio, se descubrió su alto valor nutricional. Tanto así, que los deportistas tienen en la proteína Whey o Whey protein uno de sus mayores aliados. Es un producto de alta calidad, de fácil absorción por el cuerpo, muy baja en grasa y carbohidratos.

La leche tiene dos tipos de proteínas principalmente: la caseína que supone aproximadamente el 80%, y la proteína de whey, aproximadamente el 20%. La proteína del suero es más soluble que la caseína y también tiene una calidad superior ya que es la proteína más nutritiva disponible.

La proteína del suero es de alta calidad, completa y con todos los aminoácidos esenciales, además de ser la fuente más rica conocida de BCAAs (Leucina, isoleucina y valina)

La Whey protein o proteína Whey (suero de leche) es muy superior a la proteína de soja en la cantidad de amino-ácidos esenciales, en su digestión y en los efectos sobre la salud.

Es ideal para la recuperación muscular más rápida y restauración después del entrenamiento. El músculo se “rompe” cuando se hace ejercicio y el consumo de suero de leche inmediatamente después de un entrenamiento es una gran manera de ayudar a acelerar la reconstrucción y la recuperación de sus músculos.

Mejora la cura de heridas: en pacientes que han sufrido quemadoras o se han sometido a cirugía, la proteína de suero es muy recomendada gracias a su elevada calidad y disponibilidad biológica.

La proteína del suero ayuda a mejorar la salud física en general y al mismo tiempo previene enfermedades e infecciones.

También destaca por su interesante efecto prebiótico.

Las personas con intolerancia a la lactosa deben evitar los concentrados de proteína de suero, ya que por lo general contienen lactosa y la cantidad puede variar mucho de un producto a otro. Las personas con intolerancia a la lactosa deben seleccionar un aislado de proteína de suero que tenga menos de 0,1 gramos de lactosa por cucharada (20 gramos), menos lactosa que la cantidad encontrada en una taza de yogur.

Si el consumo de proteina es muy excesivo (más de 6g x kg peso) también puede producir acidificación de la sangre, que incrementa el riesgo de sufrir osteoporosis o daños en el hígado.