Principales rutas metabólicas energéticas. Vía aeróbica

ciclismoenrutaEsta vía metabólica tiene lugar en presencia de oxígeno y utiliza fundamentalmente como sustratos energéticos el glucógeno (previamente degradado a glucosa), la glucosa y los ácidos grasos, pero puede utilizar también ciertos aminoácidos, cuerpos cetónicos, ácido láctico y glicerol.

Por una parte, la glucosa procedente de la degradación del glucógeno o de la sangre circulante se oxidará hasta piruvato a través de las reacciones químicas de la glucólisis. Posteriormente, este piruvato se convertirá en acetil-Coenzima A (acetil-CoA).

Por otro lado, los ácidos grasos también procedentes de la sangre circulante o de la propia fibra muscular, mediante un proceso oxidativo llamado beta-oxidación, se transformarán en acilCoA (ácido graso unido a la Coenzima A). Para que puedan seguir su proceso de transformación en energía deben penetrar al interior de la mitocondria, para ello necesitan unirse a la L-carnitina, que actúa como un autobús transportador. Allí, se transformarán en acetil-CoA.

Algunos aminoácidos, cetoácidos y glicerol, dentro de las propias fibras musculares pueden sufrir un proceso directo de oxidación hasta acetil-CoA si las circunstancias metabólicas del momento lo requieren, o bien transformarse en glucosa, que será almacenada en forma de glucógeno. Este proceso, llamado gluconeogénesis o neoglucogénesis, solamente puede darse en el hígado y en el riñón, pero no en el músculo esquelético, ya que éste carece de las enzimas necesarias para ello.

Dentro de las mitocondrias, el acetil-CoA formado a partir de los diferentes sustratos energéticos antes mencionados, sufre un proceso de oxidación a través del ciclo de Krebs, conocido también como ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos. En el transcurso de estas reacciones se van liberando hidrogeniones (H+) y anhídrido carbónico (CO2).

Los hidrogeniones penetran en otro ciclo metabólico denominado fosforilización oxidativa, cadena de transporte de electrones o cadena de los citocromos, en donde finalmente seunirán al oxígeno para formar agua (H2O). Durante el paso de los hidrogeniones  por esta cadena de reacciones, conocida más extensamente por el nombre de cadena respiratoria, se va fosforilando el ADP para convertirse en ATP.

Así pues, los productos finales de la oxidación de los diferentes sustratos energéticos a través del ciclo de Krebs y la fosforilización oxidativa son dióxido de carbono (CO2), agua (H2O) y adenosin trifosfato (ATP).

El CO2 que no eliminamos mediante la respiración será reutilizado para la síntesis de bicarbonato, necesario para la neutralización de las cargas ácidas producidas por el metabolismo anaeróbico.

El H2O producido ayudará a rehidratar el organismo, a mantener el volumen plasmático y a compensar la pérdida de líquidos a través del sudor para eliminar el exceso de calor producido como consecuencia directa del aumento de la actividad metabólica.

El ATP será utilizado para la conversión de energía química en energía mecánica, como se ha comentado la obtención de ATP a través del ciclo de Krebs y de la fosforilización oxidativa es un proceso lento, pues requiere muchas reacciones químicas intermediarias, cada una de las cuales está catalizada por una enzima diferente. En consecuencia, se produce poca energía por unidad de tiempo; sin embargo, la cantidad total de energía obtenida a partir de la oxidación de un mol de cualquier sustrato energético es muy alta en comparación con el resto de vías metabólicas.

Como consecuencia de la hidrólisis de un mol de fosfocreatina se resintetiza 1 ATP. La oxidación de un mol de glucosa por vía anaeróbica produce 2 moles de ATP. La oxidación de un mol de glucosa por vía aeróbica producirá 36 moles de ATP netos (cada molécula de glucosa se convertirá en 36 moléculas de ATP). Serán 37 moles de ATP si en lugar de oxidarse la glucosa es el glucógeno quien lo hace. Finalmente, la oxidación de un mol de ácido palmítico (ácido graso) proporcionará 129 ATP.

Otras ventajas de la vía aeróbica son:

  • Que no existe limitación en cuanto a la disponibilidad de sustratos energéticos, ya que los depósitos de grasa son prácticamente ilimitados.
  • Que no produce catabolitos que tiendan a alterar el equilibrio interno como ocurre en la,glucólisis anaeróbica, donde el ácido láctico producido tiende a disminuir el pH intracelular y plasmático, y a instaurar una acidosis metabólica. Por tanto, es una vía energética.

tipos-de-fibras

Por ser una vía que utiliza el oxígeno se la llama vía aeróbica.

La vía aeróbica es la que utiliza el organismo cuando el esfuerzo no es de gran intensidad, aunque sí de mayor duración, como las carreras de larga distancia en atletismo o las sesiones de entrenamiento en las distintas modalidades del fitness.

De una forma muy simple, ya que este manual trata fundamentalmente de aspectos relacionados con la nutrición, se puede decir que en el músculo existen fundamentalmente dos tipos de fibras:

  • Fibras tipo I, también conocidas como fibras lentas, fibras rojas o ST, que tienen una gran capacidad aeróbica por disponer de un elevado número de mitocondrias.
  • Fibras tipo II, con una velocidad de contracción más rápida que las anteriores y por lo tanto, con un metabolismo más dependiente de los glúcidos (recordemos que son capaces de aportar más cantidad de energía por unidad de tiempo).

tipos de fibra muscular 2