Entradas

La nutrición como terapia antienvejecimiento.

Desde hace mucho tiempo se ha relacionado la nutrición con el envejecimiento. Esta relación se ha centrado, básicamente, en los estudios de restricción calórica y en la suplementación con sustancias antioxidantes. Más recientemente se han realizado estudios encaminados a estudiar el papel de las grasas en las dieta, desde el punto de vista del estrés oxidativo como terapia antienvejecimiento.

Restricción calórica.

Como se ha descrito antes, la restricción calórica aumenta la vida media en un amplio rango de especies y disminuye la velocidad con que aparecen determinadas enfermedades relacionadas con la edad. Este efecto se lleva a cabo a través de una reducción en el estrés oxidativo. Esto se sustenta, entre otras pruebas, en la observación de que ratones calóricamente restringidos generan un menor estrés oxidativo que sus homólogos alimentados ad libitum, produciendo además un menor índice de oxidación de lípidos, proteínas, y ADN.

La restricción calórica, además previene mucho de los cambios que se produce en relación a la expresión génica durante el envejecimiento, ente los que se incluyen la elevación  en la expresión de las proteínas de shock término y la atenuación de la expresión de la proteína inducida por estrés Hsp70.

La restricción calórica podría ser una potente arma terapéutica para lucha contra el envejecimiento, ya que en un principio cumple con los requisitos exigibles de efectividad frente a la reducción del estrés oxidativo y el retraso del envejecimiento, así como contra las enfermedades asociadas a éste. No obstante, la posible aplicación de la restricción calórica como terapia antienvejecimiento en la población humana acarrea tales dificultades éticas y de tipo práctico que hacen prácticamente inviable su puesta en marcha.

Antioxidantes.

Como se ha puesto de manifiesto en los apartados anteriores, el estrés oxidativo desempeña un papel muy significativo en el proceso global de envejecimiento y, por lo tanto, la suplementación con antioxidantes podría ser de utilidad como posible terapia antienvejecimiento. Entre los primeros estudios cabe destacar los de Miquel y Ecónomos en relación a la capacidad del carbosilato de tiazolidina de aumentar la vitalidad y programar la vida media en ratones.

Posteriormente, Furukawa y cols. Mostraron el papel protector de la administración oral del glutatión frente al declive de la función inmunológica asociada al envejecimiento. Muchos otros antioxidantes han sido probados en relación al envejecimiento, con resultados más o menos positivos.

Entre dichos antioxidantes cabe destacar las vitaminas E y C, la coenzima Q, extractos herbales ricos en flavonoides y polifenoles, entre otros. Si bien los resultados obtenidos con estos antioxidantes han sido exitosos atenuación del estrés oxidativo mediado por la edad o por enfermedades asociadas a éstas, han tenido poco o ningún éxito en relación al aumento de la longevidad.

Tal vez para tener un mayor éxito con la terapia basada en antioxidantes se debería profundizar en el conocimiento de las propiedades farmacológicas de las sustancias empleadas, sobre todo en lo concerniente a la absorción, la distribución tisular y el metabolismo de estas. Además, no debe olvidarse el papel que las ROS tienen en la señalización celular, de modo que la dosis de antioxidante debe ser muy bien ajustada para evitar cambios en el estado redox que podrían alterar la función celular. Los problemas anteriores estas siendo solucionados, en parte, mediante el uso de una nueva generación de sustancias antioxidantes sintéticas, mimñeticos de la superóxido dismultasa y la catalasa. Estas sustancias están siendo ensayadas con cierto éxito, habiéndose mostrado efectivas en el aumento de la longevidad en ratones y C. elegans.

Dentro del grupo de polifenoles merece especial atención el resveratrol. Esta sustancia ha demostrado extender la vida media en diversos organismos, así como ejercer un efecto positivo en múltiples enfermedades, como el cáncer, enfermedad cardiovascular, Alzheimer, enfermedades metabólicas, entre otras. Su principal mecanismo de acción es mediante la activación de la SIRT1 (miembro de la familia denominada sirtuinas), mimetizando así el efecto  de restricción calórica sobre el envejecimiento. Estudios recientes muestran otra diana directa del reveratrol, la PI3K (fosfatidilinositol-3-quinasa), representándose asi otra via central de control de la vida máxima independiente de situinas.

Ácidos grasos de la dieta.

El tipo de grasa de la dieta condiciona de manera importante numerosos parámetros bioquímicos en la membrana mitocondrial. La importancia del tipo de ácidos grasos de la dieta reside en el hecho de que la membrana mitocondrial (y, en general, todas las membranas biológicas) es capaz de adaptar la composición de sus fosfolípidos a la grasa ingerida de forma mayoritaria. De este modo, si un individuo ingiere mayoritariamente grasa de origen animal, sus membranas serán más ricas en ácidos grasos saturados que las de otro individuo cuya fuente grasa mayoritaria sea de origen vegetal.

Por otro lado, se ha descrito de forma contundente cómo se producen las adaptaciones del sistema de transporte electrónico mitocondrial  en relación al tipo de grasa en la dieta, con mayor o menor repercusión sobre los diversos complejos del sistema. Además el estrés  oxidativo está relacionado con la composición lipídica de las membranas biológicas, de modo que una fuente grasa poliinsaturada (p. ej., aceite de girasol) generará membranas más susceptibles al daño oxidativo que una fuente saturada (grasa animal) o monoinsaturada (aceite de oliva), lo cual ha sido ampliamente demostrado en numerosas situaciones fisiológicas y patológicas, empleando numerosos modelos animales y humanos.

Los resultados obtenidos en este campo apuntan las siguientes conclusiones: el envejecimiento, entendido como un proceso endógeno y progresivo, provoca a lo largo de la vida alteraciones en la mitocondria y sus componentes, como el mtDNA (alteraciones que tienen un elevado comportamiento oxidativo). Estas alteraciones deterioran la estructura y la función mitocondriales, y, dependiendo de la capacidad del tejido en concreto para reparar el daño o eliminar la célula alterada, la función tisularar se verá afectada en mayor o menor grado.

Así, los tejidos con capacidad regenerativa, como el hígado, parecen ser capaces de remediar el daño ocasionado, como lo siguiente la ausencia de pérdida de función mitocondrial en términos de actividad citocomo axidasa. Sin embargo, se produce una pérdida de función en los tejidos posmitóticos, como el musculo esquelético o el corazón, sin capacidad para reemplazar células y, probablemente, con un sistema de reparación de daño menos efectivo (existen diferencias entre el hígado y el corazón, en relación al sistema de reparación del mtDNA). Esta pérdida de función se refleja en el descenso brusco de la actividad citocromo oxidasa, lo que da lugar a un desacoplamiento de la CTEmt, con la consiguiente ineficacia bioenergética y el aumento en la producción de ROS.

Las mitocondrias de los tejidos posmitóticos tratan de atenuar la situación desfavorable mediante el aumento de otros componentes de la CTEmt, como el citocromo b, o por medio de aumentos en el grado de poliinsaturación probablemente para intentar aumentar la fluidez y la actividad de la citocromo oxidasa restante mediante la presencia de una cardiolipina más poliinsaturada. Sin embargo, ambas acciones generan un aumento mayor en la producción de radicales libres.

El papel de la grasa en la dieta en este mecanismo residiría, por lo tanto, en la construcción de un entorno más o menos susceptible para la generación y la programación de ROS, especialmente cuando, como consecuencia de los procesos como el envejecimiento, se producen fallos en la CTEmt.

Hidratos de carbono y clasificación química

HIDRATOSLos hidratos de carbono, o carbohidratos, son la principal fuente de energía para el organismo
humano, por ser la más común y más barata en todo el mundo.
También son conocidos como glúcidos, nombre que deriva de la palabra glucosa que proviene
de la palabra griega glykys que significa dulce, aunque son pocos los que tiene este sabor. Otro nombre por el que son conocidos es el de sacáridos, de la palabra latina que significa azúcar, aunque el azúcar común es tan sólo uno de los centenares de compuestos distintos
que pueden clasificarse en este grupo.

Los hidratos de carbono son compuestos orgánicos cuya molécula está formada por tres elementos simples, el carbono, el oxígeno y el hidrógeno. Como estos dos últimos elementos se encuentran en la misma proporción que en el agua, de ahí deriva su nombre clásico de hidratos de carbono, ya que aparentemente es como si se añadieran moléculas de carbono y de agua, pero en realidad, su formulación desarrolla formas químicas mucho más complejas.
De todos los nutrientes que se pueden emplear para obtener energía, los hidratos de carbono son los que producen una combustión más “limpia” en nuestras células y dejan menos residuos en el organismo.

De hecho, el cerebro y el sistema nervioso, en condiciones normales, solamente utilizan glucosa para obtener energía, evitándose así la presencia de residuos tóxicos (como el amoniaco, que se produce al quemar proteínas).
Se encuentran fundamentalmente en los vegetales, que los elaboran con ayuda de la energía que obtienen de la radiación solar, proceso que se denomina fotosíntesis, aunque en los animales y en los seres humanos, hay pequeñas cantidades almacenadas en el hígado y músculos en forma de glucógeno.

CLASIFICACIÓN QUÍMICA

La estructura fundamental de los hidratos de carbono responde a la fórmula química
Cn (H2O)n, donde n indica el número de veces que se repite la relación para formar una molécula de carbohidrato más o menos compleja.
Respecto a la fórmula química podemos dividir a los hidratos de carbono en tres grupos principales: monosacáridos, disacáridos y polisacáridos.

Monosácaridos:
En los monosacáridos n tiene un valor igual o mayor que tres siendo más frecuentes los que cuentan con 6 átomos de carbono (C6H12O6). Son las formas más simples ya que están constituidos por una sola molécula, por ello no sufren ningún proceso de digestión, y se absorven como tales por el intestino, por lo que son la fuente de energía más rápida. Son sustancias blancas, con sabor dulce, cristalizables y solubles en agua.
Las principales moléculas de monosacáridos son hexosas, es decir, poseen seis átomos de
carbono, como la glucosa, la galactosa y la fructosa, pero los monosacáridos pueden tener
entre 3 y 7 átomos de carbono. Así, por ejemplo, estaría la ribosa que pertenece al grupo
de las pentosas ya que contiene 5 átomos y es un componente estructural de nucleótidos,
como el ATP (adenosin trifosfato o trifosfato de adenosina).

Estructura de los principales monosacáridos.
La glucosa o dextrosa es el principal producto final de la digestión de los hidratos de carbono complejos o polisacáridos. De esta forma los absorbemos.
Para su metabolismo es necesaria la participación de la hormona insulina. La glucosa podemos encontrarla como tal en la miel, en el zumo de uva y otros frutos maduros pero normalmente se encuentra en disacáridos y polisacáridos (cadenas de almidón).
La glucosa se almacena en el hígado y en el músculo en forma de glucógeno, que es la forma de almacenamiento de los carbohidratos en el organismo. Está formado por largas cadenas de glucosa unidas entre sí, constituyendo la principal fuente de energía cuando practicamos una actividad física intensa.

Cuando hay una disminución de glucosa en sangre, el glucógeno es degradado a través de enzimas y transformado en glucosa, de esta manera se pueden cubrir las necesidades energéticas del organismo. El nivel de glucosa en sangre se conoce por el nombre de glucemia, de tal forma que la palabra hipoglucemia indica un nivel demasiado bajo y por el contrario, hiperglucemia indicaría un valor demasiado alto. Los valores normales de glucemia se encuentran entre 60 y 110 miligramos de glucosa por decilitro de sangre, medidos en ayunas.
Las personas que tienen niveles altos de glucosa en sangre son los diabéticos, (hiperglucemia) que deben administrarse diversos medicamentos, además de la insulina, para que sus niveles de glucosa se mantengan en límites normales. Esta situación de normalidad se conoce como normoglucemia.

La fructosa, ingerida en cantidades moderadas, no necesita de la insulina para su metabolización, por ello puede ser consumida como sustituto del azúcar por los diabéticos. También es la principal fuente de energía de los espermatozoides, que la metabolizan en sus mitocondrias.

La podemos encontrar en la mayoría de las frutas maduras y en la miel, junto con
la glucosa. La galactosa podemos encontrarla en las legumbres junto con otros hidratos de carbono, y es uno de los componentes del disacárido lactosa (carbohidrato de la leche). Es muy importante en la dieta durante los primeros meses de vida, correspondiendo con la época de la lactancia. Se sintetiza en las glándulas mamarias y es metabolizada en el hígado, donde se convierte en glucosa.

Disacáridos
Son carbohidratos formados por la unión de dos moléculas de monosacáridos, dicha unión
se realiza por medio de los llamados enlaces glucosídicos. Por el contrario la hidrólisis, o rotura del enlace glucosídico de un disacárido origina dos unidades de monosacáridos. Son solubles en agua, dulces y cristalizables.

En la mucosa del tubo digestivo humano existen unas enzimas, que son sustancias capaces de acelerar las reacciones bioquímicas del organismo, llamadas disacaridasas, que hidrolizan el enlace glucosídico que une a los dos monosacáridos, lo que permite su absorción intestinal.

Los disacáridos más conocidos son la sacarosa, la maltosa y la lactosa.
La sacarosa está formada por una molécula de glucosa y una de fructosa. Es el azúcar de
consumo habitual, ya sea blanco o negro, que se obtiene a partir de la caña de azúcar y de
la remolacha azucarera, aunque también se encuentra en otros alimentos como la piña o la
zanahoria. Juega un papel importante en la dieta del hombre ya que contribuye a mantener los valores normales de glucosa en sangre.

La maltosa se forma por la unión de dos unidades de glucosa. La maltosa o azúcar de malta se obtiene a partir de la cebada germinada o en forma de material de reserva de tubérculos, semillas y raíces de muchos vegetales, o también como un producto intermedio de la hidrólisis del almidón. Se utiliza en la elaboración de la cerveza.

Estructura de los principales disacáridos.
La lactosa es el azúcar contenido en la leche, por eso es el único disacárido de origen animal con importancia nutricional, así por ejemplo, la leche de vaca contiene del 4 al 5% de lactosa. Está formada por una molécula de glucosa y otra de galactosa. La enzima intestinal responsable de su división o hidrólisis se llama lactasa y es una sustancia que sintetiza muy fácilmente el organismo en el periodo de la lactancia, pero en muchas ocasiones, conforme se llega a la edad adulta disminuye su síntesis o incluso desaparece totalmente. Entonces se desarrolla una intolerancia a la lactosa, de tal forma que cuando se ingieren productos que la contienen, como la leche, las natillas, el queso, etc., se producen molestias intestinales que pueden ir acompañadas de náuseas, calambres y diarrea.

En el proceso de fermentación láctica que se desarrolla para la fabricación del yogur, la lactosa se transforma en ácido láctico, responsable de la acidez que tienen estos productos, por lo tanto son más fácilmente digeribles por todos los grupos de población. Hay que considerar que el ácido láctico contenido en el yogur y leches fermentadas no tiene ninguna relación con el ácido láctico producido por las células musculares durante el ejercicio físico intenso.
El primero actúa como un nutriente más, y por lo tanto, es absorbido en la mucosa
intestinal y posteriormente utilizado por el organismo, mientras que el segundo es un producto secundario del metabolismo de la célula muscular en condiciones anaeróbicas, y su acumulación impide o disminuye la acción de las enzimas formadoras de energía, por lo que constituye un factor limitante del rendimiento en esfuerzos de elevada intensidad.

Polisacáridos
Los polisacáridos están formados por la unión de muchos monosacáridos, desde 11 hasta
cientos de miles, y la mayor parte de glúcidos que aportamos al organismo están de esta forma.
Son largas cadenas de moléculas simples de carbohidratos y dependiendo de cómo sean los enlaces químicos que los unen, el organismo podrá romperlos fácilmente mediante las enzimas digestivas o no podrá hacerlo.
Atendiendo a esta posibilidad, los clasificamos de la siguiente manera:

• Digeribles:
Dentro de este grupo se engloban los almidones o féculas y el glucógeno.
Los almidones constituyen la reserva energética de los vegetales. Fundamentalmente forman parte de los cereales, las féculas (patata) y las legumbres. Están formados por larguísimas cadenas de moléculas de glucosa unidas entre sí.
Atendiendo a la configuración espacial, podemos hablar de dos tipos de cadenas: unas rectas, llamadas amilosas, y otras ramificadas, que reciben el nombre de amilopectinas.
Dependiendo de la prevalencia de unas u otras, el almidón será más fácilmente digerido, y
por lo tanto más rápidamente absorbida la glucosa que contiene, o por el contrario, el proceso digestivo de rotura de estos enlaces será mayor y su velocidad de absorción será más lenta. Este hecho explica el índice glucémico de los alimentos de procedencia vegetal, que se comentará más adelante.
Así pues, las diversas enzimas digestivas se encargan de romper esas largas cadenas hasta
transformarlas en moléculas de glucosa para que sean absorbidas.

La rotura parcial de las cadenas de almidón por acción enzimática o por la acción del calor
dan como resultado unidades de menor tamaño llamadas dextrinas o, más comúnmente,
maltodextrinas, que son por ello más fáciles de digerir.
El glucógeno constituye la reserva glucídica de los animales y por lo tanto de la especie humana.
En el organismo se almacena en el hígado (80 gr a 160 gramos como máximo) y en el músculo (250 y 400gr). El organismo utiliza el glucógeno almacenado en el hígado para conservar la concentración adecuada de glucosa en sangre, fundamentalmente entre comidas.

El glucógeno muscular sirve de fuente de glucosa de fácil acceso para la utilización por el propio músculo en situaciones de esfuerzo muy intenso.
Cuando el organismo lo demande para la obtención de energía, el glucógeno hepático
y el muscular se irán desdoblando para formar otra vez moléculas de glucosa. Así los
depósitos de glucógeno se van llenando cuando ingerimos carbohidratos y se van vaciando
con el ayuno o cuando hacemos ejercicio intenso y prolongado.

Esta reserva permite mantener niveles adecuados de glucosa en sangre en los períodos que no hay ingesta de glúcidos, lo cual tiene una gran importancia, fundamentalmente para el cerebro.

• Parcialmente digeribles:
Son un grupo de hidratos de carbono que pueden ser fermentados por la flora intestinal dando lugar a lactato y ácidos grasos de cadena corta que pueden ser absorbidos y metabolizados.
Su valor energético es inferior a las 4 kcal por gramo que tiene el resto de glúcidos digeribles.
Constituyen un “alimento” para nuestra flora intestinal, por lo que su consumo es muy saludable.
El más conocido de este grupo es la inulina, presente en muchos vegetales y frutas.

• No digeribles: fibras:
Son largas cadenas de hidratos de carbono que la especie humana no puede digerir, aunque sí los animales herbívoros.
Actualmente se clasifican atendiendo a su solubilidad en el agua. Así pues las hay insolubles, como la celulosa, y solubles como las gomas (por ejemplo, la goma de guar) y los mucílagos.

Carbohidratos-de-la-dieta

Las Proteínas 1

Proteína procede del vocablo griego protos que significa «lo más antiguo, lo primero». Las
proteínas constituyen uno de los componentes más importantes de las células, y suponen
más del 50% del peso seco de las mismas. Son compuestos orgánicos formados por carbono,
oxígeno, hidrógeno y nitrógeno, aunque a veces pueden contener también azufre, fósforo,
hierro, magnesio y cobre.

1. PROTEÍNAS, PÉPTIDOS Y AMINOÁCIDOS

Las proteínas están formadas por pequeñas moléculas denominadas aminoácidos que se
unen unos a otros a través del denominado enlace peptídico. La unión de estos aminoácidos
forma los péptidos. Si el número de aminoácidos que se unen es inferior a diez, el péptido recibe el nombre de oligopéptido. En el caso de que esa unión se produzca entre más
de 50 aminoácidos podemos hablar de proteínas.

1.1. AMINOÁCIDOS:
Existen 20 aminoácidos basicos que forman parte de las proteínas. Todos se caracterizan por presentar
un grupo carboxilo (COOH) y un grupo amino (NH2) que van unidos, ambos, a un carbono.
Cada uno de ellos se diferencia de los otros por su grupo R o cadena lateral.
Los aminoácidos se pueden nombrar por su nombre completo, por un código de tres letras
o por una letra que los identifica. A continuación se muestra una tabla con todos estos nombres y códigos:

Tabla aminoacidos
*Nomenclatura de los aminoácidos

De esta forma, a la hora de representar la composición en aminoácidos de una proteína
no tenemos que poner el nombre de cada uno de ellos, tan solo su código.
Dentro de los 20 aminoácidos hay ocho de ellos que no pueden ser sintetizados por las células
de nuestro organismo y, por tanto, han de ser facilitados por la dieta. Estos aminoácidos
reciben el nombre de aminoácidos esenciales y son los siguientes: triptófano, fenilalanina,
valina, leucina, isoleucina, treonina, metionina y lisina.

¿Qué son las calorías? ¿todas las calorías son iguales?

tabla-de-calorias-de-los-alimentosLa cantidad de calor o energía que se libera en la combustión es expresado en calorías(kcal). Diferentes alimentos contienen cantidades diferentes de energía. Ésta es la razón por la cual un trozo de chocolate puede contener muchas más calorías que un trozo de lechuga de tamaño similar.

¿Cuántas calorías tiene …?

  • 1 gramo de proteína: 4 calorías.
  • 1 gramo carbohidratos: 4 calorías.
  • 1 gramo de grasas: 9 calorías.
  • 1 gramo de alcohol: 7 calorías.

¿Cómo crees que el organismo obtiene de los alimentos las calorías que necesita?

El organismo cubre sus necesidades de energía para el crecimiento, el mantenimiento de la temperatura corporal y para todos los tipos de trabajo y funciones metabólicas, mediante la combustión de los nutrientes, como las grasas y los hidratos de carbono. La “combustión” de los nutrientes, es muy similar al proceso de combustión en la estufa, la diferencia está en que ocurre de manera más lenta y sin producir llamas. La energía que se libera se utiliza para el funcionamiento del cuerpo, a través del metabolismo. Los residuos del metabolismo son el dióxido de carbono y el agua, que son expulsados por los pulmones mediante la respiración y los riñones e intestinos, respectivamente

¿Es lo mismo alimentación que nutrición?

imagesCAZY890NLa diferencia entre alimentación y nutrición radica en que mientras la alimentación es un acto voluntario mediante el cual se toman alimentos del exterior, la nutrición es el conjunto de procesos que tienen lugar dentro del organismo, mediante los cuales se transforman los alimentos y se incorporan a nuestros tejidos. Es un acto involuntario.

Para entender la nutrición se precisa también el conocimiento de los procesos que tienen lugar en el organismo humano para aprovechar los alimentos. Es importante conocer y entender los procesos de la digestión y relacionarlos con los sistemas circulatorio, respiratorio y excretor.

Con la ingestión de alimentos se cubren las necesidades diarias para un correcto funcionamiento y desarrollo de nuestro cuerpo. Pero para tener una alimentación sana hay que mantener un equilibrio entre los tipos de alimentos que se toman para que éstos no afecten negativamente a nuestra salud. Es muy importante seguir una dieta equilibrada, pues muchas enfermedades son causadas por una alimentación errónea y, por el contrario, son fácilmente evitables o corregibles mediante una alimentación correcta.

¿Para qué es importante realizar una buena nutrición?

imagen nutricion

Deja que la alimentación sea tu medicina.

1. Disminuir fatiga
2. Mejorar la recuperación y el rendimiento físico y mental
3. Promover la reparación de lesiones
4. Llevar a un máximo las reservas energéticas
5. Brindar una buena salud
6. Entrenar mejor y obtener más rendimiento

¿Qué son los principios inmediatos en la alimentación o Macronutrientes?

principios_inmediatosTodos los alimentos son transformados durante la digestión en cada uno de los tres grandes grupos de la alimentación: Hidratos de carbono, proteínas y grasas; también en vitaminas y minerales. Estos son los principios inmediatos (o Macronutrientes)  que nutren todas las células de nuestro organismo.

 

 

 

Presentamos blog

Laura FitnessOs presento el blog a partir del cual pueden seguir mis actividades en el mundo fitness. Voy hablar un poco de mí y de porque me decanté por el fitness.

Desde siempre me gusto hacer deporte y cuidarme, bailaba break dónde fui aprendiendo sola mediante videos, soy una persona con mucha fuerza de voluntad y que si me propongo en conseguir algo, pongo todo mi empeño en ello. También me considero una persona autodidacta.

En el año 2011 me apunte por primera vez al gimnasio, aunque hacía tiempo entrenaba en casa por cuenta propia. Me gustó bastante ya que hay variedad de máquinas y el ambiente es muy ameno pues ves a personas como tú que le gusta el deporte.

Con el tiempo se consigue experiencia y se va aprendiendo más. Me gusta leer libros de nutrición y todo lo relacionado con el fitness.

En los años 2012-2014 impartí cursos de entrenadora personal, nutricionista deportiva, realicé estudios con titulación de herbodietética y homeopatía, y por último el de monitora de educación física y ciclo indoor.

Actualmente me preparo para body fitness y ayudo a las personas a mejorar desde el punto de vista de la nutrición y el fitness.