Interés nutricional deportivo sobre los hidratos de carbono.

Los hidratos de carbono, fundamentalmente el glucógeno y la glucosa, constituyen el sustrato energético más importante para la fibra muscular activa durante el ejercicio físico, de tal forma que una de las principales causas de fatiga muscular se asocia a la falta de disponibilidad de carbohidratos para la obtención de energía.

Si no existe una disponibilidad adecuada de glucosa durante el ejercicio, la intensidad de éste disminuirá, ya que la energía proveniente de la oxidación de los lípidos y/o de las proteínas no genera tanta energía por unidad de tiempo como los hidratos de carbono.
hidratos1Así pues, asegurar un aporte de carbohidratos a las fibras musculares activas durante todo el tiempo que sea necesario, resulta esencial no sólo para retrasar la aparición de la fatiga, sino también para elevar el rendimiento deportivo.

La ingesta de hidratos de carbono es fundamental en cualquier tipo de situación deportiva (a no ser que se pretenda «secar» el cuerpo y su ingesta sea menor), pero especialmente en aquéllas que su duración es superior a una hora.

Hace ya más de treinta años quedó demostrado mediante biopsias musculares que la realización de ejercicios submáximos (se entiende como ejercicio submáximo el realizado alrededor del 80-85% de la intensidad máxima) de larga duración exigía una continua disponibilidad de glucosa.

Cuando los depósitos de glucógeno muscular eran bajos, aparecía la fatiga, de tal forma que aquellos deportistas que comenzaban el ejercicio con mayores concentraciones de glucógeno tendían a resistir el esfuerzo durante más tiempo que los que lo hacían con bajas concentraciones. Esto tuvo como resultado el diseño de estrategias dirigidas a realizar cambios en la alimentación y el entrenamiento, todos ellos destinados a incrementar los depósitos orgánicos de glucógeno, para así, aumentar el rendimiento deportivo.

Estos cambios perseguían realizar una carga de carbohidratos durante los dos o tres días previos al esfuerzo, entendiendo éste como ejercicio de resistencia submáximo, pensando que así se podría aumentar el rendimiento, sobre todo en aquellos esfuerzos donde la demanda de glucógeno muscular es muy grande.
El primer nombre que se le dio a este tipo de dieta fue el de «dieta disociada escandinava ». Comenzaba 6-7 días antes de la competición: durante tres días se entrenaba a gran intensidad y se reducía casi a cero la ingesta de carbohidratos (se comían proteínas y grasas), y durante los otros tres se reducía el entrenamiento exclusivamente a ejercicios de elasticidad a la vez que la proporción de carbohidratos que se consumía era como mínimo del 80% de las calorías totales.
Actualmente, se conoce como carga de carbohidratos y es una variación de la anterior, donde no se dejan de consumir carbohidratos durante los primeros tres días, aunque sí se reduce su proporción, ya que se ha comprobado que los resultados de la carga son los mismos, de este modo se reducen los desagradables efectos del entrenamiento con prácticamente “cero” carbohidratos.
Lo que sí está demostrado también, es que para una misma intensidad de esfuerzo los deportistas muy entrenados en resistencia utilizan menos glucógeno que los peor entrenados.

Esto es así porque los primeros han desarrollado una mayor capacidad aeróbica que los segundos y ello les permite seguir utilizando los ácidos grasos como sustratos energéticos para una misma intensidad de esfuerzo, lo cual conduce a un mayor ahorro de glucógeno. Ahora bien, tanto los unos como los otros necesitan seguir consumiendo una dieta muy rica en carbohidratos, ya que constituyen el principal sustrato energético muscular en esfuerzos intensos y/o prolongados.

Por ello, las dietas deben contener como mínimo un 55-60%  (puede ser menor en caso de definicion múscular ) de la ingesta calórica total en forma de carbohidratos. Así pues, una dieta de 2.500 kcal diarias debe contener un mínimo de 310 g de carbohidratos, que representan aproximadamente 4,5 g por kilo de peso del deportista y día.

Ahora bien, para ejercicios de moderada o alta intensidad y de duración no superior a una
hora se requieren ingestas de carbohidratos del orden de 6-7 gramos por kilo de peso y día.
Para conseguir estas ingestas son de gran ayuda los llamados suplementos dietéticos específicamente formulados para deportistas, ya que a la vez de carbohidratos, contienen otro tipo de nutrientes como minerales y vitaminas que facilitan la utilización metabólica de los carbohidratos.

IMPORTANCIA DE LOS CARBOHIDRATOS EN EL DEPORTE

  • La falta de carbohidratos disminuye el rendimiento y acelera la aparición de la fatiga.
  • La administración de carbohidratos mantiene el rendimiento y retrasa la fatiga.
    Una dieta rica en carbohidratos mejora el rendimiento durante los esfuerzos de varios
    días de duración.
  • Las dietas bajas en carbohidratos retrasan la recuperación postejercicio y disminuyen el rendimiento.

 

Principios inmediatos

Las Vitaminas

frutas-y-verdurasLas vitaminas son un grupo de sustancias de naturaleza orgánica que están presentes en pequeñas cantidades en los alimentos, y que son imprescindibles en los procesos metabólicos que tienen lugar en la nutrición de los seres vivos. No aportan energía y por lo tanto no producen calorías, ya que no se utilizan como combustible, pero sin ellas el organismo no tiene la capacidad de aprovechar los elementos constructivos y energéticos suministrados por los
alimentos o nutrientes.

Tienen la importante misión de facilitar la transformación en energía que siguen los substratos a través de las vías metabólicas, que intervienen como catalizador en las reacciones bioquímicas.

Por el torrente sanguíneo llegan al interior de las células, y se utilizan como precursoras
de las coenzimas, a partir de las cuales se elaboran las miles de enzimas que regulan
las reacciones de las que viven las células.

Un aumento de las necesidades biológicas requiere un incremento de estas sustancias, como sucede en determinadas etapas de la infancia, el embarazo, la lactancia y durante la tercera edad. Por el mismo motivo, hoy todo el mundo reconoce que tanto los deportistas o quienes practican una actividad física intensa requieren un mayor aporte vitamínico por el incremento en el esfuerzo físico. También el consumo de tabaco, alcohol o drogas en general y el abuso de café o té provocan un mayor gasto de algunas vitaminas, por lo que en estos casos es necesario un aporte suplementario.

Aunque las necesidades orgánicas sean de miligramos o incluso microgramos, son nutrientes esenciales, puesto que no podemos sintetizarlas, por lo tanto debemos ingerirlas obligatoriamente con la alimentación. Una excepción es la vitamina D, que se puede formar en la piel con la exposición al sol, y las vitaminas K, B1, B12 y ácido fólico, que se forman en pequeñas cantidades en la flora intestinal.

La dieta debe ser equilibrada y abundante en productos frescos y naturales, para disponer
de todas las vitaminas necesarias, privilegiando más los alimentos de fuerte densidad nutricional, como las legumbres, cereales y frutas, sobre los meramente calóricos. Otro aspecto importante a valorar es la conservación y cocción de los alimentos, ya que se producen pérdidas vitamínicas inevitables, puesto que el agua, el calor y el tiempo disminuyen el nivel vitamínico de los alimentos por una oxidación acelerada.
Algunas personas, o ciertos grupos, cuentan con carencias vitamínicas sistemáticas. Dentro de estos grupos de riesgo están las personas que realizan una restricción calórica permanente al tiempo que desarrollan mucho ejercicio, como son las gimnastas o bailarinas, personas muy preocupadas con su figura que realizan regímenes muy desequilibrados en su contenido, consumidores de comidas rápidas o enlatadas por razones laborales o por vivir solos, también los vegetarianos, ya que tendrían carencias de las vitaminas contenidas en los productos cárnicos y lácteos.
El criterio más común para clasificarlas es el de su solubilidad, atendiendo a ello, las dividimos en dos grandes grupos:

  • Solubles en agua o hidrosolubles.
  • Solubles en grasas y aceites o liposolubles.

vitaminas

Proteína Whey

protein_shake

El nombre “Whey” viene del inglés y significa “suero”. Muy por el contrario de ser un alimento sintético, la proteína Whey es totalmente natural ya que se obtiene a partir del suero de leche y es una proteína de alto valor biológico. El Whey es el caldo o suero que queda después de la fabricación del queso. Es tratado mediante una serie de filtros especiales para separar la proteína de suero de la de la lactosa y otros componentes como la grasa.

Antiguamente, al suero era considerado un desecho sin valor de la elaboración del queso, pero tras su estudio, se descubrió su alto valor nutricional. Tanto así, que los deportistas tienen en la proteína Whey o Whey protein uno de sus mayores aliados. Es un producto de alta calidad, de fácil absorción por el cuerpo, muy baja en grasa y carbohidratos.

La leche tiene dos tipos de proteínas principalmente: la caseína que supone aproximadamente el 80%, y la proteína de whey, aproximadamente el 20%. La proteína del suero es más soluble que la caseína y también tiene una calidad superior ya que es la proteína más nutritiva disponible.

La proteína del suero es de alta calidad, completa y con todos los aminoácidos esenciales, además de ser la fuente más rica conocida de BCAAs (Leucina, isoleucina y valina)

La Whey protein o proteína Whey (suero de leche) es muy superior a la proteína de soja en la cantidad de amino-ácidos esenciales, en su digestión y en los efectos sobre la salud.

Es ideal para la recuperación muscular más rápida y restauración después del entrenamiento. El músculo se «rompe» cuando se hace ejercicio y el consumo de suero de leche inmediatamente después de un entrenamiento es una gran manera de ayudar a acelerar la reconstrucción y la recuperación de sus músculos.

Mejora la cura de heridas: en pacientes que han sufrido quemadoras o se han sometido a cirugía, la proteína de suero es muy recomendada gracias a su elevada calidad y disponibilidad biológica.

La proteína del suero ayuda a mejorar la salud física en general y al mismo tiempo previene enfermedades e infecciones.

También destaca por su interesante efecto prebiótico.

Las personas con intolerancia a la lactosa deben evitar los concentrados de proteína de suero, ya que por lo general contienen lactosa y la cantidad puede variar mucho de un producto a otro. Las personas con intolerancia a la lactosa deben seleccionar un aislado de proteína de suero que tenga menos de 0,1 gramos de lactosa por cucharada (20 gramos), menos lactosa que la cantidad encontrada en una taza de yogur.

Si el consumo de proteina es muy excesivo (más de 6g x kg peso) también puede producir acidificación de la sangre, que incrementa el riesgo de sufrir osteoporosis o daños en el hígado.

Digestión, absorción y función de las grasas

La digestión de las grasas comienza en la boca donde el alimento se disgrega en partículas
más pequeñas y donde actúa la enzima denominada lipasa lingual.
Posteriormente, la digestión continúa en el estómago, actuando sobre las partículas de grasa tanto la lipa como la lipasa gástrica, ya que estas enzimas no se inactivan en medio ácido.

4figura04

Seguidamente, en el intestino delgado, concretamente en el duodeno y yeyuno, la presencia de ácidos grasos produce la liberación de colecistokinina, que activa la contracción de la vesícula biliar y, de esta manera, se produce la liberación de la bilis que emulsiona las grasas y, a la vez, ayuda a reducir la acidez que todavía tiene el contenido intestinal en esa zona. De esta manera se felicita la acción enzimática de la lipasa pancreática. De esta forma se obtienen finalmente monoglicéridos (una molécula de glicerol y un ácido graso), ácidos grasos, glicerol y colesterol.

 

Para simplificar el proceso de la absorción de las grasas y facilitar así su comprensión, diremos que todos estos compuestos se absorben y pasan a la sangre que los transportará hasta el hígado.
Este proceso de absorción de las grasas es muy eficiente, puesto que la excreción media diaria en heces es de tan sólo 4-6 gramos con ingestas de alrededor de 100 gramos.

METABOLISMO LIPÍDICO
Las grasas procedentes de la dieta que no son utilizadas en el metabolismo diario se acumulan en forma de triglicéridos dentro de los adipocitos (células específicas del tejido adiposo) con la función de servir de reserva energética en caso de necesidad.
Como ya se ha descrito en el capítulo anterior, el glucógeno es la fuente energética de primer orden en situaciones de ejercicio físico intenso, pero cuando los niveles de estos depósitos disminuyen, nuestro organismo debe recurrir a otra fuente energética: los lípidos.

El primer paso es la movilización de los mismos desde el tejido adiposo hasta las células que necesitan la energía. El proceso de división de triglicéridos en ácidos grasos y glicerol se denomina lipólisis. Posteriormente, los ácidos grasos pasan al torrente sanguíneo para ser transportados a los diferentes tejidos. Este proceso se ve favorecido por niveles bajos de glucosa en sangre.

Una vez dentro de las células, serán transformados en moléculas más pequeñas (AcetilCoA, que ya pueden entrar en la ruta aeróbica de producción de energía que vimos en el capítulo anterior).
Para que este proceso se lleve a cabo, los ácidos grasos han de atravesar la membrana mitocondrial y entrar en la mitocondria de la célula, que es el orgánulo celular donde serán transformados en energía. Los ácidos grasos son tan sumamente grandes que necesitan un transportador para poder entrar dentro de la mitocondria y así poder ser metabolizados. A este transportador se le llama L-carnitina.

La presencia en la dieta de este transportador favorece la movilización de lípidos para ser
degradados y transformados en energía, de tal forma que cuanto más L-carnitina haya en la célula, mayor capacidad de transporte de ácidos grasos tendrá, y por lo tanto, mayor
cantidad de energía producirá a partir de las grasas.

PRINCIPALES FUNCIONES DE LAS GRASAS EN EL ORGANISMO

Las funciones de los lípidos son muy variadas:

  • Función estructural. Forman parte de las membranas celulares y de las vainas de las células del sistema nervioso.
  • Función de reserva. Son las principales sustancias de reserva del organismo, de tal forma que la mayor parte de los nutrientes contenidos en los alimentos que ingerimos, si no son utilizados, se transforman en grasas (triglicéridos) y se almacenan.
  • Función energética. Su contenido energético es mucho más elevado que el de los hidratos de carbono y proteínas. Un gramo de grasa genera, por término medio, 9 kcal, pero su conversión en energía es más lenta que la de los hidratos de carbono, por lo que no pueden generar tanta energía por unidad de tiempo, aunque la cantidad total de ésta almacenada en forma de grasa en nuestro organismo es muchísimo mayor.
  • Función protectora y aislante térmico. Mientras no se utilizan metabólicamente, cumplen funciones mecánicas, ya que se concentran en diferentes puntos del organismo, protegiendo órganos, al mismo tiempo que aíslan al cuerpo frente a las pérdidas de calor.
  • Función reguladora. Algunos lípidos actúan como hormonas y vitaminas (corticosteroides, hormonas sexuales, vitamina D, etc.).
  • Funciones específicas. Receptores específicos de superficie de membrana.

Cómo afecta la menstruación en el deporte

Son muchas las mujeres que se ven afectadas en el entrenamiento debido a problemáticas con su ciclo menstrual. Ya sea porque tienen molestias, o porque se encuentran con poca fuerza o ánimo en un determinado momento y no pueden rendir como quisieran en su entreno habitual.

Por suerte, aunque para muchas así no lo parezca, el hecho de tener varios picos hormonales a lo largo del ciclo hace que la prestación atlética pueda verse muy favorecida ya que entra en juego la cascada hormonal. Es un gran aliciente ya que siendo totalmente naturales, podremos aprovechar esos picos para poder dar más de sí.

151_mdConocer más profundamente las fases del ciclo menstrual de la mujer nos puede ayudar mucho a programar un entrenamiento acorde a estos cambios hormonales y sus consecuencias fisiológicas y psicológicas:

La fase folicular – Va desde el día 1 al 13 de cada ciclo. Se trata de la fase post-menstrual.

 •La fase de ovulación – Entre el 14 y 15 de cada ciclo menstrual.

• La fase lútea– Del día 16 al 28 y se denomina también la fase pre-menstrual.

En todo el proceso del ciclo menstrual existe un equilibrio hormonal entre Progesterona y Estrógenos. En la primera parte del ciclo, (fase folicular o post menstrual), que se da en los primeros 14 días antes de la ovulación, predominan los estrógenos, por lo que es la etapa en la que mejor respondemos al ejercicio debido a la liberación de la hormona del crecimiento. La segregación de esta hormona ayuda a perder grasa y a tonificar tu cuerpo ya que promueve la lipólisis (utilización de grasas como sustrato energético), estimula el crecimiento de la masa muscular y la retención de calcio y mineralización de los huesos.

Durante la fase premenstrual (fase lútea) predomina la secreción de progesterona, la otra hormona femenina que regula el ciclo menstrual. Mucho se ha hablado sobre ella, debido a que es una hormona catabólica y podría afectar en la calidad de tu entrenamiento, y por ende en el rendimiento, pautándose habitualmente ejercicios de baja-media intensidad en esta fase. Sin embargo, ningún estudio ha demostrado que esto afecte realmente al ejercicio ya que la disminución en los valores de estrógenos en esta fase se ven compensados con los aumentos de hormona de crecimiento, cortisol, estradiol derivados del ejercicio físico.

Durante la propia menstruación, las mujeres presentan múltiples síntomas biológicamente independientes. Como hemos comentado anteriormente no hay ninguna razón para no realizar ejercicio físico, pero sí para realizarlo atendiendo a nuestras variaciones fisiológicas.

CICLO MENSTRUAL Y EJERCICIO FÍSICO

Pocas son las mujeres que afirman no tener ningún tipo de molestia o dolor durante esta fase del ciclo. No obstante, acurrucarse en el sofá no es siempre el mejor remedio. Sin embargo salir y ponerse en movimiento está demostrado que es uno de los secretos para que los periodos sean menos dolorosos.

El ejercicio físico libera endorfinas, que además de ser conocidas como las hormonas de la felicidad, están relacionadas con el alivio del dolor y la relajación muscular. En otras palabras, son los analgésicos naturales del organismo.

Cualquier tipo de pérdida de sangre, provoca en el organismo una pérdida de hemoglobina lo que puede disminuir el transporte de oxigeno en nuestro cuerpo. Ante esto recomendamos no realizar ejercicio que solicite un alto componente de oxigeno para no limitar el trabajo del organismo. También se aconseja un adecuado aporte de hierro en la dieta.

Además durante la menstruación debemos tener en cuenta que la Frecuencia Cardiaca se ve alterada aumentando sus valores basales. Al igual que la temperatura corporal, la cual, puede verse entorpecido su equilibrio térmico en ocasiones. La fatigabilidad y la excitación del Sistema Nervioso tan bien están aumentados en esta fase. El descanso tiene que ser adecuado y también se debe evitar el estrés en la medida que sea posible.

Puede darse el caso que si el entreno es excesivo ocurrirán alteraciones en duración del sangrado pero simplemente con reducir la intensidad del mismo debería ser suficiente para mejorar los síntomas.

Existen pues, muy pocas razones para restringir el ejercicio de una mujer menstruando, salvo la incomodidad de la propia mujer.
 
BENEFICIOS DEL EJERCICIO FÍSICO EN EL CICLO MENSTRUAL

RETENCIÓN DE LÍQUIDOS: Durante el periodo premenstrual el efecto de la hormona Antidiurética (ADH) sobre la excreción de sodio se ve limitada. Al retenerse sodio se retiene agua provocando incluso tumefacción en algunos casos y acumulación de 1 o 2 litros de agua en exceso. Uno de los efectos del ejercicio parece ser la reducción de los niveles de ADH y como consecuencia una reducción en la retención de líquidos. En este caso siempre hablamos de ejercicios de baja-moderada intensidad ya que en ejercicios extenuantes la ADH se ve alterada para reabsorber agua de los riñones y reducir la excreción de orina.

TOLERANCIA AL DOLOR: Una investigación realizada en la Universidad de Oxford determinó que el ejercicio físico realizado en equipo y en sincronía eleva el umbral del dolor. La tolerancia al dolor, tan subjetiva, se ve aumentada con entrenamientos sistemáticos y planificados y es de gran ayuda para los periodos menstruales.

MINERALIZACIÓN ÓSEA: Las alteraciones hormonales dan lugar a una reducción de la densidad ósea ya que los estrógenos en la fase pre-menstrual disminuyen su actividad. Esta se palia con el efecto del ejercicio físico, que está demostrado, que aumenta la densidad mineral ósea debido a los impactos osteomusculares implícitos. Para ello recomendamos antes caminar o correr que andar en bicicleta o nadar.

CIRCULACIÓN SANGUÍNEA: Al estimular la circulación sanguínea por todos los grupos musculares, también lo hacemos por la región pélvica pudiendo ayudar a aliviar el dolor de la fase menstrual sin tener problemas de aumentar el sangrado por esta misma razón.

HIPÓTESIS DE LAS ENDORFINAS:  Las endorfinas son sustancias que comunican a las neuronas. Son nuestra «morfina» ya que transportan el material del placer, euforia, felicidad y aplacan el dolor. Se incrementan en momentos placenteros de nuestra vida como alegría, emoción, placer sexual y ejercicio físico. Es por ello por lo que tienen un efecto natural contra el dolor y por tanto, pueden  difuminar la percepcion dolorosa durante el periodo premenstrual y menstrual.

PSICOLÓGICOS: Uno de los cambios mas evidentes durante el ciclo menstrual, son los cambios constantes de humor, unidos a trastornos de ansiedad, susceptibilidad, estrés, ocasionados en las mujeres que padecen el síndrome premenstrual (SPM).

Un elevado nivel de estrés aumenta la producción de prostaglandinas uterinas, lo cual ocasionaría mayor dolor durante la menstruación.

El ejercicio físico actuará para reducir los efectos de estas situaciones emocionales no deseadas a través de programas amenos y divertidos, siempre teniendo en cuenta las características e intereses de las deportistas para proporcionarles entrenamientos sanos y personales.

El ejercicio físico también posee un efecto claro sobre la mejora de la salud mental desarrollando programas de ejercicios con mujeres en su misma situación (compartir experiencias, dudas, etc.)

Debemos sacar provecho al deporte comprobando que ejerce múltiples beneficios fisiológicos y psicológicos sobre el ciclo menstrual.

Colesterol y lipoproteínas

73793_19190“El colesterol es necesario para nuestro organismo, siempre y cuando la cantidad no sea excesiva”

 

 

El colesterol es una sustancia adiposa que forma parte de las membranas celulares de todo el cuerpo, y que en su mayor parte se produce en el hígado. El cuerpo necesita determinada cantidad de colesterol para funcionar adecuadamente. Pero el exceso de colesterol en la sangre, combinado con otras sustancias, puede adherirse a las paredes de las arterias desencadenando aterosclerosis.

Los niveles de colesterol de un individuo están determinados en gran medida por la genética, y el colesterol alto puede ser una característica hereditaria. Pero, además, una dieta con alimentos ricos en colesterol (presente en carnes, grasas lácteas y yema de huevo), grasas saturadas, grasas trans y grasa total también puede afectar sus niveles de colesterol.

Aunque hoy en día la palabra colesterol está llena de connotaciones negativas asociadas a una mala alimentación, a problemas cardiovasculares y obesidad, en realidad se trata de un elemento necesario para nuestro organismo. Lo importante es conocer qué es, cómo funciona y cuándo es perjudicial para la salud. El colesterol no es otra cosa que un tipo de grasa, un lípido que participa en muchos procesos fisiológicos importantes como el celular, el digestivo y en la sintetización de hormonas, entre otras funciones.
Nuestro hígado es capaz de producir el colesterol necesario para el organismo. Sin embargo, a través de la alimentación, podemos recibir una cantidad adicional de esta sustancia que, en muchas ocasiones, es perjudicial para la salud, sobre todo para el corazón.

Las lipoproteínas son conjugados de proteínas con lípidos, especializadas en el transporte de estos últimos y se dividen en varios grupos según su densidad:

  • HDL(Lipoproteína de alta densidad): Son fundamentales en el transporte reverso del colesterol desde los tejidos hacia el hígado, único órgano capaz de excretarlo (por la vía biliar). Sintetizadas por el intestino e hígado.
  • VLDL (Lipoproteínas de muy baja densidad): Son lipoproteínas precursoras compuestas por triacilglicéridos y ésteres de colesterol principalmente, son sintetizadas en el hígado y a nivel de los capilares de los tejidos extra hepáticos (tejido adiposo, mama, cerebro, glándulas suprarrenales) son atacadas por una enzima lipoproteina lipasa la cual libera a los triacilgliceroles, convirtiéndolos en ácidos grasos libres.
  • LDL(Lipoproteína de baja densidad): Es una lipoproteína que transporta el colesterol desde el hígado al resto del cuerpo, para que sea utilizado por distintas célula.

Debido a que LDL  transporta el colesterol a las arterias, un nivel alto de LDL está asociado con aterosclerosis, infarto de miocardio y apoplejía. Algunos le llaman «colesterol malo», cabe resaltar que esta clasificación entre colesterol bueno o malo no debe ser usada, puesto que la LDL cumple una importante función en el organismo. Sin embargo, su exceso si puede ser dañino.

Sin embargo, esta es una extrema simplificación de la verdadera función de las lipoproteínas y sus necesidades fisiológicas, que es mucho más compleja, por lo que esta forma extendida y popular de llamar al HDL y el LDL no es científicamente correcta, induciendo al error de creer que unas son beneficiosas para la salud (HDL) y otras no (LDL).

De acuerdo a los estudios científicos actuales, eL único valor que debe tenerse como indicador de buena salud y riesgo a futuro de enfermedades coronarias es el de un elevado «colesterol total» junto con la de otros factores de riesgos propios de la vida del paciente en cuestión (tabaquismo, obesidad, sedentarismo, diabetes, altos niveles de estrés, etc.)

Rango recomendado:

La American Heart Association proporciona un conjunto de guías para bajar el nivel de LDL y el riesgo de cardiopatía isquémica.

  • Menos de 100 mg/dL  Colesterol LDL óptimo, correspondiente a un nivel reducido de riesgo para cardiopatía isquémica.
  • 100 a 129 mg/dL  Nivel próximo al óptimo de LDL. 130 a 159 mg/dL  Fronterizo con alto nivel de LDL.
  • 160 a 189 mg/dL  Alto nivel de LDL.
  • 190 mg/dL y superiores  Nivel excesivamente elevado, riesgo incrementado de cardiopatía isquémica

 

 

 

 

 

Tabla de contenido de Omega 3 Omega 6 y grasas saturadas

Tabla de contenidos grasos en alimentos:

Omega-3

 

 

 

 

 

 

TABLA DE CONTENIDOS GRASOS EN ALIMENTOS:

tabla1 omega

tabla 2 omega

tabla 3 omega

Tipos de Omega 3 y sus beneficios

aceite-de-pescado-omega-3-alivia-dolorCada vez más y gracias a los beneficios que suponen para el organismo, sobretodo en complejos nutricionales o alimentos enriquecidos con ácidos omega 3, suelen incluir en el etiquetado el tipo de ácido Omega 3 que incluyen en su composición y entre paréntesis, el tipo de Omega 3 a qué corresponden. Normalmente suelen ser EPA o DHA y ALA (ácido alfa linolénico).
Los ácidos grasos Omega-3 son ácidos grasos esenciales (el organismo humano no los produce internamente), poliinsaturados que tienen muchas propiedades benéficas para nuestra salud ( grasas buenas).

Los ácidos Omega 3 se encuentran en alta proporción en los tejidos y grasas de ciertos pescados (por regla general pescado azul), y en algunas fuentes vegetales como las semillas de lino y frutos secos como las nueces.

Existen tres tipos de ácidos grasos omega 3

  • Ácido Alfa Linolenico, (ALA)
  • Ácido Docosa Hexaenoico (DHA)
  • Ácido Eicosa Pentaenoico (EPA)

El ácido alfa-linolénico (ALA), se encuentra en algunas semillas, frutos secos y aceites de algunas plantas.
Los otros dos EPA y DHA, se encuentran casi exclusivamente en los pescados, crustáceos y en menor cantidad en la yema de huevo.
¿Y qué diferencia hay entre ellos? A pesar de que puede parecer a simple vista que tienen las mismas propiedades (todos son Omega 3), el ácido alfa-linolénico de las plantas no tiene las mismas propiedades que los omega-3 provenientes del pescado.
Los Omega-3 del aceite de pescado EPA y DHA tienen funciones especiales en el cuerpo.

El DHA se encuentra concentrado altamente en el cerebro, en donde colabora a que las células del cerebro (las neuronas) se comuniquen entre ellas y las protege de las substancias dañinas (como las de la enfermedad de Alzheimer), por lo que mantener un buen nivel de DHA contribuye a la protección de la salud del cerebro, entre otros de sus beneficios .
El EPA es muy importante para la salud del corazón y también influye en la función del cerebro para tener vasos sanguíneos saludables, gracias a sus propiedades anti-inflamatorias y anticoagulantes.
El ácido alfa-linolénico es el único Omega-3 se encuentra en las plantas. Tiene algunos de los beneficios para la salud asociados con el EPA y el DHA, pero no en la mayor proporción que los dos anteriores.
La mayor parte de ácido alfa-linolénico cuando llega al organismo se oxida o “se quema” para obtener energía. Una cantidad muy pequeña de ALA, ( menos del 5%), se convierte en EPA. Sólo una muy pequeña cantidad de este EPA se convierte después en DHA.
Lo que crea un dilema es nuestra habilidad limitada para convertir el ácido alfa-linolénico ALA en EPA y casi nada a DHA.

El cuerpo necesita DHA para la estructura y función del cerebro y para la retina de los ojos. Cuando no hay suficiente DHA disponible, los substitutos, hechos de otros ácidos grasos, no funcionan tan bien.

Los alimentos más ricos en EPA y DHA son el pescado y el marisco. sobre todo el pescado azul.Es recomendable incluirlo en la dieta, al menos dos o tres veces a la semana.

Entre los pescados azules de aguas frías más aconsejables encontramos la anchoa, el salmón salvaje, la sardina, los arenques, el atún, la caballa, la palometa, la trucha. Estos peces producen el omega 3 porque en ellos funciona como anticongelante, ya que al vivir en aguas frías, si no fuera por el omega 3 morirían congelados.

En cuanto a crustáceos y similares, estarían englobados el cangrejo, la gamba, el centollo, la langosta, el mejillón, las vieiras, las ostras … Aunque por otras causas éstos últimos (los crustáceos y conchas marinas) se deben tomar con moderación.

Respecto de los vegetales hay que decir que contienen pequeñas cantidades de Omega 3, entre ellos los que más : La lechuga.(Hojas) , La soja (Semilla) , Las espinacas (Planta) Las fresas (Fruto) El pepino (Fruto) Las coles de Bruselas (Hojas) , Las coles (Hojas) Las piñas (Fruto) Solo los frutos secos y sobre todo las nueces y la linaza son una fuente significativa de Omega 3 (mayoritariamente en forma de ALA).

Efectos benéficos del consumo regular de Omega 3 en el organismo:

  • Mejoran la salud cardiovascular.
  • Mejoran el perfil lipídico (reduce la concentración de triglicéridos en sangre)
  • Previenen la aparición de arritmias, la muerte súbita, diabetes , obesidad y reducen la presión arterial.
  • Mejoran la función pulmonar y reducen el asma.
  • Poseen efectos beneficiosos en enfermedades inflamatorias como la artritis reumatoide, inflamación intestinal y enfermedades de la piel (eczema y psoriasis).
  • Reducen el crecimiento de células cancerígenas (contribuye a prevenir el cáncer de mama, próstata y colon)
  •  Son esenciales en el desarrollo del feto y el recién nacido.
  • Benéficos para el tratamiento y prevención de ciertos trastornos mentales, principalmente la depresión.
  • Benéficos en el desarrollo mental en niños prematuros.
  • La sensibilidad anormal al frío (síndrome de Raynaud):
  • El trastorno de déficit de atención e hiperactividad (TDAH) en niños
  • Dolores de menstruación (dismenorrea).

En poblaciones que incluyen cotidianamente en su dieta alimentos ricos en Omega 3 (sobre todo mediante el consumo regular de pescado azul y algunos frutos secos como las nueces y la linaza) la aparición de enfermedades del corazón es muy baja. Por ello es recomendable limitar el consumo de grasas saturadas e incrementar el consumo de Omega 3.

Además de mejorar la salud cardiovascular, los ácidos grasos Omega 3 ayudan a movilizar la grasa almacenada en el organismo que tanto cuesta de eliminar a veces. Para decirlo en una manera sencilla, actúan como “quemagrasas”, al aumentar el metabolismo de los cuerpos grasos, en dónde incluiríamos el colesterol y los triglicéridos, ambos conocidos por ser ”grasas malas”

Para aquellos que no comáis pescado (vegetarianos), podéis conseguir el Omega 3 recomendado a diario mediante el consumo de frutos secos. Las nueces, la linaza y el sésamo, tienen una fuente significativa de Omega 3. En menor cantidad lo encontraréis en los aguacates , aceite de soya, semilla o aceite de chía.

Las cantidades recomendadas de Omega 3 para los adultos es de 2.2 g/día, lo que equivale a unos 100g de pescado, 400g de linaza o 350g de nueces (4 ó 5 nueces).

Existen enfermedades en las cuales el suplemento de Omega 3 ha tenido positivos efectos, como en el caso de la prevención de la depresión. Efectivamente “en países industrializados occidentales, donde se observa una baja ingesta de pescado, se observa una alta incidencia de depresión, como evidencia una revisión de la información de nueve países realizada por el Dr. Joseph Hibbeln”, argumenta Evelyn Muñoz, académica de la Escuela de Nutrición y Dietética de la Universidad Andrés Bello.

Según la académica otros estudios también han encontrado que altas concentraciones en sangre de ácido docosahexanoico (DHA), un tipo de Omega 3 que se encuentra en pescados, se relacionan con el aumento de la regeneración de serotonina y menores incidencias de depresión y suicidio.

Al respecto el “Journal of Affective Disorders” publicó un estudio donde existían niveles menores de Omega 3 en la membrana de los glóbulos rojos de personas con depresión, versus el grupo control sano. “También concluyeron que la gravedad de la depresión era inversamente proporcional a los niveles de Omega 3 en la membrana de glóbulos rojos y la ingesta dietaria”, agrega la nutricionista.

En el 2003 el “American Journal of Clinical Nutrition” presentó el estudio Rótterdam, que concluyó que las personas con depresión tenían niveles menores de Omega 3 que aquellos que no padecían la enfermedad.

“En base a la evidencia existente, se indica el uso de suplemento de Omega 3, de 3 a 4 gramos al día, en pacientes en tratamiento con medicamentos antidepresivos. Al parecer, en ellos mejora la respuesta al tratamiento”.

Interacciones con otros suplementos
Hierbas y suplementos que podrían retardar la coagulación de la sangre. Las dosis altas de Aceite de Salmón pueden retardar la coagulación, usarlo en conjunto con hierbas, reduce la pérdida de sangre en algunas personas. Estas hierbas incluyen angélica, clavos de olor, salvia miltiorrhiza, ajo, jengibre, ginkgo, ginseng Panax, trébol rojo, cúrcuma, sauce y otras. Precaución en personas que tomen anticoagulantes.En caso de embarazo, se recomienda tomar dos raciones semanales de pescado, sobre todo durante el tercer trimestre, que es cuando se desarrolla la maduración neurológica. Pero no conviene tomar más de lo necesario, pues casi todos los peces contienen mercurio, un metal muy peligroso para el feto. Entre los peces que más mercurio acumulan están el tiburón y el pez espada.

 

Lípidos o Grasas

 

lipoproteinaEstán formados por carbono, oxígenos e hidrógeno, pero asociados de manera diferente, lo que les da unas características muy distintas, Las grasas o lípidos se encuentran en diversos alimentos, de distinto origen y en diferentes concentraciones.

Dentro del reino animal, los alimentos con un elevado porcentaje lipídico son los preparados comestibles a base de grasa de bovino o porcino (manteca, tocino), así como la mantequilla o nata. La grasa visible de la carne contiene un 70% o más de grasas. Pero existen también lípidos en forma «invisible» en muchos alimentos: yema de huevo, carne magra, pescado y lácteos.

Dentro del reino vegetal las fuentes de lípidos más importantes son los aceites (de oliva, de semillas…), grasas puras en estado líquido. Los frutos secos grasos (cacahuetes, almendras…) contienen un 50-60% de grasas. Algunos frutos tropicales, como aguacate, son ricos en lípidos.

Junto con los glúcidos, los lípidos son los elementos nutritivos contenidos en los alimentos que nos proporcionan la mayor parte de las energías necesarias para la vida, por eso los alimentos ricos en ellas se incluyen entre los energéticos.

Clasificación:

Los lípidos se clasifican en dos grupos, atendiendo a que posean en su composición ácidos grasos (Lípidos saponificables) o no los posean (Lípidos insaponificales)

  1. Lípidos saponenciales.
  • Simples: Son lípidos saponificables en cuya composición química sólo intervienen carbono, hidrogeno y oxígeno.
  • Acilglicéridos.
  • Ceras.
  • Complejos: Son lípidos saponificables en cuya estructura molecular además de carbono, hidrógeno y oxígeno, hay nitrógeno, fosforo o un g lucido. Son las principales moléculas constructivas de la doble capa lipídica de la membrana, por lo que también se llaman lípidos de membrana. Son moléculas anfipáticas, es decir, presenta una zona fidrófoba  y otra hidrófila.
  • fosfolípidos.
  • Esfingolipidos.
  • Glucolipidos.
  1. Lípidos insaponificables.
  •  Terpenos.
  • Esteroides.
  • Prostaglandinas.

 Los lípidos desempeñan cuatro funciones:

Función de reserva. Son la principal reserva energética del organismo. Un gramo de grasa produce 9,4 kilocalorías en las reacciones metabólicas de oxidación, mientras que las proteínas y glúcidos sólo producen 4,1 kilocaloría/gr.

Función estructural. Forman las bicapas lipídicas de las membranas. Recubren órganos y le dan consistencia, o protegen mecánicamente como el tejido adiposo de pies y manos.

-Función biocatalizadora. En este papel los lípidos favorecen o facilitan las reacciones químicas que se producen en los seres vivos. Cumplen esta función las vitaminas lipídicas, las hormonas esteroideas y las prostaglandinas.

-Función transportadora. El transporte de lípidos desde el intestino hasta su lugar de destino se realiza mediante su emulsión gracias a los ácidos biliares y a los proteolípidos.

 Ácidos grasos

Los ácidos grasos son sustancias químicas formadas básicamente por átomos de carbono e hidrógeno de diferentes longitudes de cadena, responsables del comportamiento fisiológico de muchas grasas. Estas cadenas acaban con dos átomos de oxígeno.

Pueden ser de varios tipos:

 • Ácidos grasos saturados. Los átomos de carbono tienen todos sus lugares de unión ocupados. Son solidos a temperatura ambiente. Los más abundantes son el ácido palmítico y el esteárico.

Su ingesta no debe exceder del 7-10% del total calórico diario.

Las investigaciones más recientes sugieren que los ácidos grasos saturados individuales tienen funciones biológicas específicas e importantes en el cuerpo2:

El ácido butírico regula la expresión de varios genes y puede intervenir en la prevención del cáncer, deteniendo el desarrollo de las células cancerígenas; El ácido palmítico participa en a regulación de las hormonas; El ácido palmítico y el mirístico participan en la transmisión de mensajes entre células y en la función inmunitaria.

La presencia excesiva de grasas saturadas en nuestro organismo no es nada saludable, favoreciéndose la obstrucción de las arterias y la concentración de «colesterol malo» (LDL).

• ácidos grasos monoinsaturados: son ácidos grasos insaturados con un doble enlace entre carbonos. Principalmente provienen del reino vegetal y los encontramos en estado líquido. Un ejemplo es el ácido oleico (tipo omega 9), presente en el aceite de oliva entre un 54% y un 80%, el aceite más resistente a la descomposición química originada por las altas temperaturas y el menos absorbido por los alimentos que se fríen en él.

El consumo de ácidos grasos monoinsaturados está relacionado con la presencia de «colesterol bueno» y protege al organismo contra la acumulación de grasas en las arterias y el envejecimiento de la piel. Al igual que el resto de ácidos grasos, constituye una fuente de energía, es regulador de la temperatura corporal y contribuye a la protección de determinados órganos vitales como el corazón y el riñón al envolverlos.

Se aconseja que su ingesta represente el 15 ó 20% de la ingesta calórica total diaria

• ácidos grasos poliinsaturados: con varios dobles enlaces entre carbonos, que el organismo no puede sintetizar y, por lo tanto, son obtenidos a través de la dieta. Principalmente provienen del reino vegetal y los encontramos en estado líquido. Un ejemplo son los ácidos linoleico, linolénico y araquidónico (tipos omega 3 y omega 6), presentes en los frutos secos, el pescado azul y algunas legumbres como la soja y sus derivados.

La presencia de ácidos grasos poliinsaturados disminuye el colesterol total y la concentración de «colesterol malo» en las arterias, al mismo tiempo que protege contra el envejecimiento de la piel, aunque no es recomendable un consumo excesivo. Al igual que el resto de ácidos grasos, constituye una fuente de energía, es regulador de la temperatura corporal y contribuye a la protección de determinados órganos vitales como el corazón y el riñón al envolverlos.tales como el corazón y el riñón al envolverlos.

tabla 1

tabla3

tabla2

 

 

Metabolismo de los hidratos de carbono

Durante los trabajos físicos intensos, como la práctica deportiva, los hidratos de carbono constituyen la mayor fuente de energía para el organismo, a la vez que también es la de más fácil y rápida obtención.

wpid-wpid-metabolismohidratosEsto es así porque los hidratos de carbono son las sustancias que más energía roporcionan
por unidad de tiempo. Por ello, si para realizar una determinada actividad física se ecesita
un aporte elevado de energía en cada instante, nuestro organismo recurre siempre a la utilizaciónde la glucosa almacenada en nuestro cuerpo en forma de glucógeno. Cuando las reservas de glucógeno se agotan, la energía obtenida por otras sustancias, como por ejemplo las grasas, no permite intensidades de esfuerzo tan elevadas, porque su “potencia” calórica por unidad de tiempo es menor.

La mayor parte de las células que forman los tejidos son capaces de utilizar muchas sustancias como fuente de energía, pero sin embargo, los glóbulos rojos y las células del sistema nervioso (responsables en parte de la actividad cerebral) utilizan glucosa y les cuesta mucho tiempo adaptarse para poder utilizar otras sustancias. Por ello necesitamos disponer siempre de una reserva glucídica.

La Organización Mundial de la Salud recomienda que el 55-60% de la energía calórica total que nos suministran los alimentos diariamente sea en forma de hidratos de carbono,
preferiblemente complejos (polisacáridos). Los azúcares simples no deberían suponer más
del 5% de las calorías totales diarias ingeridas.

Pero según las metas de cada persona el porcentaje Hidratos de carbono pueden subir o bajar (volumen muscular o definicion) al igual que en los distintos deportes.

Los hidratos de carbono contenidos en los alimentos, como ya se ha comentado, a medida
que se digieren se van transformado en unidades más simples, hasta que al final se convierten en monosacáridos (normalmente glucosa) y así son absorbidos, y pasan al torrente sanguíneo para ser conducidos a los tejidos que los necesiten.

La glucosa también se puede transformar en lípidos en el hígado que  posteriormente son transportados al tejido adiposo.
Pero la glucosa tiene también otros destinos:

• Ser transformada en piruvato, a través de la ruta metabólica conocida como glucólisis.
Este metabolito es el sustrato fundamental que interviene en la obtención de energía por
las principales rutas.
• Ser convertida a pentosas, a través de la vía denominada ruta de las pentosas, fosfato necesario para la generación de NADPH, coenzima que se utiliza en la biosíntesis de ácidos grasos y esteroides, y la formación de ribosa 5 fosfato, carbohidrato necesario para la síntesis de nucleótidos para la formación de ADN.
• Ser almacenada como glucógeno en hígado y músculos.

La glucólisis es una ruta metabólica formada por 10 reacciones enzimáticas, en la que una
molécula de glucosa se transforma en dos moléculas de tres átomos de carbono llamado ácido pirúvico. En el proceso se invierte y se genera energía. El rendimiento energético final de la glucólisis es de 2 ATP puesto que se necesita gastar 2 ATP en las etapas iniciales para poner en marcha el proceso, pero en las finales se generan 4. El ATP (adenosin trifosfato) es la unidad biológica universal de energía ya que, al romperse, es la molécula que libera más energía.
Una vez tenemos ácido pirúvico o piruvato éste puede seguir dos rutas ya se encuentre en
presencia o “ausencia” de oxígeno.
Cuando el suministro de oxígeno es abundante y los músculos no están trabajando intensamente, las células utilizan el piruvato de manera aeróbica, es decir, en presencia de oxígeno.
En esta situación el piruvato pasa al interior de la mitocondria donde una serie de reaccio-
nes hacen posible la transformación en AcetilCoA (sustrato altamente energético), que es el iniciador del ciclo de Krebs. Este ciclo es un compendio de reacciones por las que el Acetil- CoA es degradado dando gran cantidad de unidades energéticas y CO2 + H2O, estos dos últimos expulsados a la atmósfera por la espiración.

Las unidades energéticas producidas son de varios tipos:
• ATP, energía de utilización directa, no tiene que sufrir cambios para poder ser utilizada como
energía.
• NADH y FADH, moléculas que ceden electrones a una cadena de transportadores electrónicos
cuyo aceptor final es el oxígeno, por eso se denomina metabolismo aeróbico. Esta
cadena se utiliza para formar ATP.
Como conclusión, podríamos decir que el rendimiento energético neto de una molécula de
glucosa degradada completamente por la ruta aeróbica se resume en la siguiente fórmula:
C6H12O6 + 6 O2 —>> 6 CO2 + 6 H2O + 36 ATP
Es un balance energético muy alto ya que la eficiencia de la maquinaria de producción de
energía es de un 40%, es decir, de la energía contenida en una molécula de glucosa somos
capaces de utilizar el 40%, el resto se disipa en forma de calor.

Cuando las células tienen un ritmo de trabajo elevado requieren alta cantidad de energía y
carecen del oxígeno suficiente para seguir un metabolismo aeróbico, es decir, la necesidad
de energía por unidad de tiempo es mucho mayor que la energía que se puede obtener por
la vía del metabolismo aeróbico, entonces se recurre a la fermentación homoláctica, más conocida como glucólisis anaeróbica, llevada a cabo fuera de las mitocondrias.
En este caso, las moléculas de piruvato producidas en la glucólisis no se dirigen a la cadena
respiratoria puesto que no hay oxígeno, pero como el organismo sigue necesitando energía
de forma rápida y en ausencia de oxígeno, se sigue una ruta alternativa: transformar el piruvato en ácido láctico. No es la forma más energética, ya que únicamente rinde 2 ATP por molécula de glucosa metabolizada. Además disminuye el pH del músculo (aumenta la acidez), afectando de esta manera a la capacidad de contracción de las fibras musculares, pero es una buena forma de obtener energía de manera rápida.
El balance energético obtenido de la degradación de la glucosa por la vía anaeróbica es únicamente 2 ATP. Podríamos resumir la glucólisis anaeróbica mediante la siguiente reacción:

C6H12O6 —>> 2 Ácido láctico + 2 ATP

El ácido láctico producido se disocia totalmente, originando lactaro y H+, que debe ser tamponado en las células mus culares por el sistema amortiguador más importante: el bicarbonato. Como consecuencia de ello se incrementará la producción de CO2 por la célula muscular durante el ejercicio intenso.

Una correcta planificación del entrenamiento mejora el sistema de tamponamiento y por lo tanto, permite aumentar la duración del ejercicio intenso.
El ácido láctico ha de ser reconvertido en piruvato y para ello requiere de oxígeno, por eso
después del ejercicio se sigue respirando con una frecuencia elevada. Aumenta la concentración de oxígeno en sangre. La demanda de ATP por unidad de tiempo ha disminuido y el ácido láctico se convierte en ácido pirúvico de nuevo.